10047 Ilmenite Basalt (low K) 138 grams

Figure 1: Photo of 10047 showing interior basaltic texture. NASA S75-26513. Cube is 1 cm.

Introduction

Lunar sample 10047 is a low-K, ilmenite basalt with a relatively coarse texture (figure 1). It has been extensively studied. The crystallization age of 10047 is 3.71 b.y. and it has a cosmic ray exposure age of 84 m.y.

Petrography

Schmitt et al. (1970) termed 10047 as a "coarsegrained, vuggy, ophitic, cristobalite basalt." James and Jackson (1970) termed it a "medium grained ophitic basalt". Beaty and Albee (1978) note that 10044, 10047 and 10058 "are so similar to one another that it seems quite likely that these rocks are fragments of a larger block." Smith et al. (1970) and others mistakenly refer to this rock as a "micrograbbro", but it has extensive mineral zoning.

Lovering and Ware (1970) and Beaty and Albee (1978) give a complete description of the mineral chemistry of 10047. Dence et al. (1970) reported pyroxene and plagioclase up to 2 mm in size. The residual mesostasis between the major minerals contains residual glass with fine-grained intergrowth of several minor phases.

Mineralogy

Olivine: Lovering and Ware (1970) reported fayalite in an "intergrowth region" and give an analysis. Beaty and Albee (1978) also give an analysis (Fa₉₉₅).

Figure 2: Photomicrograph of thin section of 10047. NASA S69-54011. Scale unknown (about 1 cm).

Pyroxene: Lovering and Ware (1970) and Beaty and Albee (1978) determined the composition of pyroxene in 10047 (figure 3). Ross et al. (1970) and Essene et al. (1970) determined the abundance and zoning in trace elements (Cr, Mn, Ti and Al) in pyroxene from 10047. They found the cores of the large pyroxenes were highly aluminous with coupled substitution by Ti etc.

Pyroxferroite: Frondel et al. (1970) and Chao et al. (1970) give the optical, chemical and crystallographic data for pyroxferroite in 10047. Mason et al. (1970) give the composition as $Wo_{28}En_4Fs_{78}$. Burnham (1971) determined the crystal structure.

Mineralogical Mode for 10047

	James and	Beaty and	Lovering and
	Jackson 70	Albee 1978	Ware 1970
Olivine			
Pyroxene	44.8	46.53	45
Plagioclase	37.8	34.91	30
Ilmenite	10.1	11.2	17
mesostasis	1.9	0.1	
silica	4.5	6.22	
troilite	0.5	0.43	1
phosphate	0.1	0.36	

Figure 3: Pyroxene composition of 10047 (data from Beaty and Albee 1978).

Plagioclase: Lovering and Ware report plagioclase cores with An_{90} and rims An_{75} with elevated K_2O . Essene et al. (1970) determined zoning from $An_{90}Ab_{9.8}Or_{0.2}$ to $An_{75}Ab_{21}Or_{4}$. Stewart et al. (1970) determined crystal structure and cell size.

Ilmenite: Beaty and Albee, Lovering and Ware determined the composition of ilmenite, while Stewart et al. (1970) determined cell size. Ilmenite in 10047 has abundant silicate melt inclusions (Roedder and Weiblen).

Ulvospinel: Smith et al. (1970) report that small subhedra of ulvospinel are found intergrown with ilmenite in the finely intergrown residuum.

Troilite: Lovering and Ware determined the composition of troilite (Fe:S = 1.0087). It contains blebs of Ni-free iron metal.

Cristobalite: Lovering and Ware determined the composition of silica and Dence et al. (1970) determined the cell dimensions.

K-rich Glass: Lovering and Ware (1970) and Beaty and Albee (1978) reported the composition of the

residual glass (K₂O = 7-10 %). Dence et al. (1970) and Beaty and Albee found needles of Ba,K feldspar in the glass (6.7% Ba).

Tranquillitvite: Dence et al. (1970) and others reported the analysis of a new Fe, Ti, Zr-silicate mineral in 10047. Lovering et al. (1971) defined it as "tranquillityite", providing a full analysis (table 2). Hinthorne et al. (1979) and Rasmussen

Lunar Sample Compendium C Meyer 2009

Figure 4: Composition of 10047 compared with that of other Apollo lunar samples.

Figure 6: Argon plateau by Stettler et al. (1974).

et al. (2008) were able to date it by Pb/Pb ion probe techniques.

Zirconolite: Rasmussen et al. (2008)

Summary of Age Data for 10047

	Ar/Ar plateau	Pb/Pb
Stettler et al. 1974	3.74 ± 0.03 b.y.	
Guggisberg et al. 1979	3.71 ± 0.03	
Hinthorne et al. 1979		3.75 ± 0.05
Rassmussen et al. 2008		3.7095 ± 0.0042
Note: Not corrected for n		

1000 10047 100 sample/ chondrite 10 1 0.1 [╈]Lu Sm Eu Pr Gd Tb Dy Ho Ēr La Nd Tm Ce

Figure 5: Normalized rare-earth-element composition for low-K basalt 10047 (the line) compared with that of low-K basalt 10020 and high-K basalt 10049 (the dots) (data from Wiesmann et al. 1975).

Figure 7: Argon plateau age by Guggisberg et al. (1979).

Baddeleyite: Rasmussen et al. (2008)

Phosphate: Beaty and Albee (1978) give an analysis of apatite. Lovering et al. (1974) reported the composition of a 15 micron grain of rare earth element phosphate (monazite?) they found included in heddenberrgite in the mesostasis of 10047.

Lunar Sample Compendium C Meyer 200

Table 1a. Chemical composition of 10047.

reference weight	Compston70		Rose70		Goles70		Rhodes80		Wakita70) 563 mg		Ganapathy70		Anders71	
Vergini SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum	42.16 9.43 9.89 19.11 0.28 5.67 12.15 0.45 0.11 0.11 0.18	 (a) 	41.3 10.2 9.8 19 0.29 6.1 12.2 0.65 0.11	(b) (b) (b) (b) (b) (b) (b) (b)	43 10 10.6 19.4 0.27 5.8 12.2 0.47	(c) (c) (c) (c) (c) (c) (c)	41.6 10.02 10.27 19.09 0.3 5.99 12.16 0.44 0.1 0.11	(a) (a) (a) (a) (a) (c) (a) (a) (a)	44.5 10.8 7.4 21.9 0.35 6.8 13.6 0.35 0.082	46 9.5 11.1 19.8 0.29 4.8 12.6 0.49 0.06	(c) (c) (c) (c) (c) (c) (c) (c)				
Sc ppm V	13	(a)			92 63	(c) (c)	92	(c)	120 73	90 57	(c) (c)				
Cr Co	1220 16	(a) (a)	1505	(b)	1250 12.2	(c) (c)	1480 11.3	(c) (c)	1810 15	1380 19	(c) (c)	14.4	(d)	12	(d)
Ni Cu Zn Ga	<20 16 13 4	(a) (a) (a) (a)					8.9	(a)				13.3 5.76 5.35	(d) (d) (d)	1.8	(d)
As Se Rb Sr	1.11 209	(a) (a)					1.3 219	(a) (a)				1.25	(d)	0.25 1.54	(d) (d)
Y Zr Nb Mo Ru	134 334 23	(a) (a) (a)					128	(a)	70	800	(c)				
Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb												2 25 255 109	(d) (d) (d) (d)	1.89 2.8	(d) (d)
Sb ppb Te ppb Cs ppm												13 0.045	(d) (d)	0.06	(d)
Ba La Ce Pr	88 20 48 13	(a) (a) (a) (a)			11.3 46	(c) (c)	10.4 39	(c) (c)	250 8.5	290 12.2	(c) (c)		(u)	0.00	(u)
Nd Sm Eu Gd	36	(a)			18.9 2.71	(c) (c)	15.8 2.51	(c) (c)	16.1 2.2	20.2 2.9	(c) (c)				
Tb Dv					4.1	(c)	3.7	(c)							
Ho Er					7.9	(c)									
Tm Yb Lu Hf Ta W ppb Re ppb					18.2 2.88 13.2 2.6	(c) (c) (c) (c)	12.6 1.93 11.3 2.2	(c) (c) (c) (c)	18 2.3 15	18 2.3 16	(c) (c) (c)				
Os ppb Ir ppb												0.24	(d)	0.005	(d)
Pt ppb Au ppb	0.6	(-)					0.0	(5)	2.4	1.6	(5)	0.33	(d)	0.029	(d)
U ppm	0.0	(a)			0.16	(c)	υ.σ	(C)	2.4	0.1	(C)				

technique: (a) XRF, (b) micro XRF, (c) INAA, (d) RNAA

Table 1b. Chemical composition of 10047.

reference	Essene70	Beaty78		Hurley 70	Silver 70		
Weight SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum	41.8 9.6 10.1 18.6 0.24 5.7 11.9 0.51 0.08	42.51 9.21 10.54 19.31 0.26 5.51 11.82 0.48 0.02 0.13 0.22	(f) (f) (f) (f) (f) (f) (f) (f) (f) (f)			P0 Fraction of Tracks -20 -10	TRACK LENGTH DISTRIBUTION IN PYROXENEmoonestherville
Sc ppm V Cr Co Ni Cu Zn Ga Ge ppb As Se Rb Sr Y Zr Nb Mo Ru Rh Pd ppb Sn ppb Sn ppb Sn ppb Sb ppb Cs ppm Ba La Ce Pr Nd Sm Er Tm Yb Lu Hf Ta Wppb bb Sc Ppb Db Ca Sm Sm Sm Sm Sm Sm Sm Sm Sm Sm Sm Sm Sm				0.93 (e) 194 (e)	,5 11 g	C Meyer 05 ,71 PB ,9 ,12 ,16 ,25 ,26 ,31 ,39 ,42 ,47 ,64 ,189 TS PM	Figure 8: Track length in pyroxene from 10047 compared with Esterville meteorite (Crozaz et al. 1970). 10047 138 g 27 30 53 69 56 54 58 93 96 g 19.4 g 9.6 g 138 186 210 211 2.3 g TS
Ir ppb Pt ppb Au ppb Th ppm U ppm <i>technique</i>	(a) XRF (l	b) micro X	ŔF	. (c) INAA (c	0.849 0.6 0.246 0.21 () RNAA (e) IDM	(e) 03 (e) MS. (f) elec	c. Probe

Table 2.	Chemical	composition o	f Tranquillityite	and Zirconolite.
----------	----------	---------------	-------------------	------------------

reference weight	Lovering	tran.	Rasmussen08 zirconolite						
SiO2 %	13.66	13.77	13.98	13.75	13.84	13.65	17	14.97	0.08
TiO2	19.75	20.66	20.01	20.28	19.95	19.8	18	20.43	28.51
AI2O3	0.87	0.9	0.83	0.85	0.76	0.92	0.5	1.13	0.41
FeO	43	42.37	42.9	42.34	42.68	42.5	41	42.71	9.7
MnO	0.36	0.3	0.34	0.3	0.31	0.5		0.34	
MgO	0.03		0.18	0.11	0.04			0.08	
CaO	1.04	1.11	1.17	1.2	1.15	1.2	1	1.1	3.18
Na2O	0.02							0	
K2O	0.03	0.04	0.04	0.05	0.02		0.5	0	
ZrO2	16.96	16.79	16.35	16.87	17.81	16.9	16	14.17	30.61
HfO2	0.05	0.06	0.04	0.05	0.05	0.49		0.29	0.6
Y2O3	2.5	2.73	2.61	2.58	2.36	3.5	5	2.5	9.05
Nb2O3								0.74	3.9

Chemistry

Numerous labs analyzed 10047 in 1970 (table 1, figure 4 and 5). Rhodes and Blanchard (1980) reanalyzed the sample with the same result. Essene et al. (1970) and Beaty and Albee (1978) determined the composition of thin sections by measuring the mode and combining with average mineral compositions (table 1b).

Ganapathy et al. (1970) analyzed a powder prepared from 10047, but when Anders et al. (1971) analyzed a chip instead they obtained much lower values for trace elements. Reed and Jonvanovic (1970) reported Li, F, Cl, Br and I.

Radiogenic age dating

Stettler et al. (1974) and Guggisberg et al. (1979) determined crystallization ages of 3.74 and 3.71 b.y. by the Ar/Ar plateau technique (figure 6 and 7). Small grains of zirconolite and tranquillityite have been precisely dated by Rassmussen et al. (2008).

Cosmogenic isotopes and exposure ages

Marti et al. (1970), Arvidson et al. (1975) and Eugster et al. (1984) reported ⁸¹Kr exposure ages of 86 m.y., 84 m.y. (determined by Schwaller 1971) and 87.4 m.y., respectively. Stettler et al. (1974) and Guggisberg et al. (1979) determined an ³⁷Ar/³⁸Ar cosmic ray exposure age of 70 and 78 m.y. respectively. Eberhardt et al. (1970) calculated 110 m.y. from data by Funkhouser et al. (1970).

Other Studies

Oxygen isotopes were reported for mineral separates of 10047 by Onuma et al. (1970).

Rare gas abundance and isotopic ratios were reported by Eugster et al. (1984), Funkhouser et al. (1970) and Bogard et al. (1971).

Crozaz et al. (1970) studied the fossil comic ray track density as a function of depth in plagioclase and pyroxene crystals from 10047 (figure 8) and determined an exposure age of 16 m.y.

Processing

Apollo 11 samples were originally described and cataloged in 1969 and then "re-cataloged" by Kramer et al. in 1977.

List of Photo #s for 10047

B&W TS S69-53977 S69-53980 S69-54011 - 12 S69-54044 S69-54048 S69-54064 S69-59269 S69-59277 S69-59282 S70-48962 - 3 color TS S70-49212 - 3S70-50541 - 2 S76-26298 - 9 B&W TS S72-32082 S75-25083 - 87Processing S75-26511 - 14 S76-25537 S76-25542 S82-27857

References for 10047

Anders E., Ganapathy R., Keays R.R., Laul J.C., and Morgan J.W. (1971) Volatile and siderophile elements in lunar rocks: Comparsion with terrestrial and meteoritic basalts. *Proc.* 2nd Lunar Sci. Conf. 1021-1036.

Arvidson R., Crozaz G., Drozd R.J., Hohenberg C.M. and Morgan C.J. (1975) Cosmic ray exposure ages of features and events at the Apollo landing sites. *The Moon* **13**, 259-276.

Bayer G., Felsche J., Schulz H. and Ruegger P. (1972) X-ray study and Mossbauer spectroscopy on lunar ilmenites (Apollo 11). *Earth Planet. Sci. Lett.* **16**, 273-274.

Beaty D.W. and Albee A.L. (1978) Comparative petrology and possible genetic relations among the Apollo 11 basalts. *Proc.* 9th Lunar Planet. Sci. Conf. 359-463.

Bogard D.D., Funkhouser J.G., Schaeffer O.A. and Zahringer J. (1971) Noble gas abundances in lunar material-cosmic ray spallation products and radiation ages from the Sea of Tranquillity and the Ocean of Storms. *J. Geophys. Res.* **76**, 2757-2779.

Borg J., Dran J.C., Durrieu L., Jouret C. and Maurette M. (1970) High voltage electron microscope studies of fossil nuclear particle tracks in extraterrestrial matter. *Earth Planet. Sci. Lett.* **8**, 379-386.

Compston W., Chappell B.W., Arriens P.A. and Vernon M.J. (1970b) The chemistry and age of Apollo 11 lunar material. *Proc. Apollo 11 Lunar Sci. Conf.* 1007-1027.

Crozaz G., Haack U., Hair M., Maurette M., Walker R. and Woolum D. (1970) Nuclear track studies of ancient solar radiations and dynamic lunar surface processes. *Proc. Apollo 11 Lunar Science Conf.* 2051-2080.

Dence M.R., Douglas J.A.V., Plant A.G. and Traill R.J. (1970) Petrology, mineralogy and deformation of Apollo 11 samples. *Proc. Apollo 11 Lunar Science Conf.* 315-340.

Eberhardt P., Geiss J., Graf H., Grogler N., Krahenbuhl U., Schwaller H., Schwarzmuller J. and Stettler A. (1970) Correlation between rock type and irradiation history of Apollo 11 igneous rocks. *Earth Planet. Sci. Lett.* **10**, 67-72.

Essene E.J., Ringwood A.E. and Ware N.G. (1970) Petrology of the lunar rocks from Apollo 11 landing site. *Proc. Apollo 11 Lunar Sci. Conf.* 385-397.

Eugster O., Eberhardt P., Geiss J., Grögler N. and Schwaller H. (1984b) Cosmic ray exposure histories and ²³⁵U-¹³⁶Xe dating of Apollo 11, Apollo 12, and Apollo 17 mare basalts.

Proc. 15th Lunar Planet. Sci. Conf. in J. Geophys. Res. 89, C171-C181.

Funkhauser J.G., Schaeffer O.A., Bogard D.D. and Zahringer J. (1970) Gas analysis of the lunar surface. *Proc. Apollo 11 Lunar Sci. Conf.* 1111-1116.

Ganapathy R., Keays R.R., Laul J.C. and Anders E. (1970) Trace elements in Apollo 11 lunar rocks: Implications for meteorite influx and origin of moon. *Proc. Apollo 11 Lunar Sci. Conf.* 1117-1142.

Gatehouse B.M., Grey I.E., Lovering J.F. and Wark D.A. (1977) Structual studies on tranquillityite and related synthetic phases. *Proc.* 8th *Lunar Sci. Conf.* 1831-1838.

Goles G.G., Randle K., Osawa M., Lindstrom D.J., Jerome D.Y., Steinborn T.L., Beyer R.L., Martin M.R. and McKay S.M. (1970) Interpretations and speculations on elemental abundances in lunar samples. *Proc. Apollo 11 Lunar Sci. Conf.* 1177-1194.

Gopalan K., Kaushal S., Lee-Hu C. and Wetherill G.W. (1970) Rb-Sr and U, Th-Pb ages of lunar materials. *Proc. Apollo 11 Lunar Sci. Conf.* 1195-1206.

Guggisberg S., Eberhardt P., Geiss J., Grogler N., Stettler A., Brown G.M. and Pecket A. (1979) Classification of the Apollo-11 basalts according to Ar³⁹-Ar⁴⁰ ages and petrological properties. *Proc.* 10th Lunar Planet. Sci. Conf. 1-39.

Hinthorne J.R., Andersen C.A., Conrad R.L and Lovering J.F. (1979) Single-grain 207Pb/206Pb and U/Th age determinations with a 10-micron spatial resolution using the ion microprobe mass analyzer (IMMA). *Chem. Geology* 25, 271-303.

Hughes S.S. and Schmitt R.A. (1985) Zr-Hf-Ta fractionation during lunar evolution. *Proc.* 16th Lunar Planet. Sci. Conf. D31 in J. Geophys. Res. **90**.

Hurley P.M. and Pinson W.H. (1971) Whole-rock Rb-Sr isotopic age relationships in Apollo 11 lunar samples. *Proc. First Lunar Sample Conference* 1311-13-15.

James O.B. and Jackson E.D. (1970) Petrology of the Apollo 11 ilmenite basalts. *J. Geophys. Res.* **75**, 5793-5824.

Kramer F.E., Twedell D.B. and Walton W.J.A. (1977) Apollo 11 Lunar Sample Information Catalogue (revised). Curator's Office, JSC 12522

Lovering J.F. and Ware N.G. (1970) Electron probe microanalyses of minerals and glasses in Apollo 11 lunar samples. *Proc. Apollo 11 Lunar Sample Conf.* 633-654.

Lovering J.F. and Kleeman J.D. (1970) Fission track uranium distribution studies on Apollo 11 lunar samples. *Proc. Apollo 11 Lunar Sample Conf.* 627-631.

Lovering J.F. and Butterfield D. (1970) Neutron activation analysis of rhenium and osmium in Apollo 11 lunar material. *Proc. Apollo 11 Lunar Sample Conf.* 1351-1355.

Lovering J.F. and 14 authors (1971) Tranquillityite: A new silicate mineral from Apollo 11 and Apollo 12 basaltic rocks. *Proc. Second Lunar Science Conf.* 39-45.

Lovering J.F. and Wark D.A. (1971) Uranium-enriched phases in Apollo 11 and Apollo 12 basaltic rocks. *Proc.* 2nd *Lunar Sci. Conf.* 151-158.

Lovering J.F., Wark D.A., Gleadow A.J.W. and Britten R. (1974) Lunar monazite: A late-stage (mesostasis) phase in mare basalt. *Earth Planet. Sci. Lett.* **21**, 164-168.

Marti K., Lugmair G.W. and Urey H.C. (1970) Solar wind gases, cosmic ray spallation products and the irradiation history of Apollo 11 samples. *Proc. Apollo 11 Lunar Sci. Conf.* 1357-1367.

Onuma N., Clayton R.N. and Mayeda T.K. (1970) Apollo 11 rocks: Oxygen isotope fractionation between minerals, and an estimate of the temperature of formation. *Proc. Apollo 11 Lunar Science Conf.* 1429-1434.

Rasmussen B., Fletcher I.R. and Janet R. Muhling (2008) Pb/Pb geochronology, petrography and chemistry of Zr-rich accessory minerals (zirconolite, tranquillityite and baddeleyite) in mare basalt 10047. *Geochim. Cosmochim. Acta* 72, 5799-5818.

Rhodes J.M. and Blanchard D.P. (1980) Chemistry of Apollo 11 low-K mare basalts. *Proc. 11th Lunar Planet. Sci. Conf.* 49-66.

Roedder E. and Weiblen P.W. (1970) Lunar petrology of silicate melt inclusions, Apollo 11 rocks. *Proc. Apollo 11 Lunar Sample Conf.* 801-837.

Rose H.J., Cuttitta F., Dwornik E.J., Carron M.K., Christian R.P., Lindsay J.R., Ligon D.T. and Larson R.R. (1970b) Semimicro X-ray fluorescence analysis of lunar samples. *Proc. Apollo 11 Lunar Sci. Conf.* 1493-1497.

Ross M., Bence A.E., Dwornik E.J., Clark J.R. and Papike J.J. (1970) Mineralogy of the lunar clinopyroxenes, augite and pigeonite. *Proc. Apollo 11 Lunar Sample Conf.* 839-848.

Schmitt H.H., Lofgren G. and Swann G.A., and Simmons G. (1970) The Apollo 11 samples: Introduction. *Proc. Apollo 11 Lunar Science Conf.* 1-54.

Silver L.T. (1970) Uranium-thorium-lead isotopes in some Tranquillity Base samples and their implications for lunar history. *Proc. Apollo 11 Lunar Sci. Conf.* 1533-1574.

Smith J.V., Anderson A.T., Newton R.C., Olsen E.J., Wyllie P.J., Crewe A.V., Isaacson M.S. and Johnson D. (1970) Petrologic history of the moon inferred from petrography, mineralogy and petrogenesis of Apollo 11 rocks. *Proc. Apollo 11 Lunar Sci. Conf.* 897-925.

Stettler A., Eberhardt P., Geiss J., Grogler N. and Maurer P. (1974) On the duration of the lava flow activity in Mare Tranquillitatis. *Proc.* 5th *Lunar Sci. Conf.* 1865-1888.

Wakita H., Schmitt R.A. and Rey P. (1970) Elemental abundances of major, minor, and trace elements in Apollo 11 lunar rocks, soil, and core samples. *Proc. Apollo 11 Lunar Sci. Conf.* 1685-1717.