12016

Ilmenite Basalt 2028.3 grams

Figure 1: Photo of 12016,0 showing vesicles and zap its on surface. Cube is 1 in. NASA# S75-33942.

Introduction

12016 is rounded on all sides with abundant micrometeorite pits. Remnants of glass linings from large zap pits are present. Neal et al. (1994) classify it as an ilmenite basalt. It has not been dated.

Petrography

Dungan and Brown (1977) report that 12016 "is an equigranular, medium-grained microgabbro" somewhat similar to 12056. Olivine in 12016 is resorbed and often included within pyroxene grains. Pyroxenes tend

to be elongate (0.5 to 1 mm) and occur as complex intergrowths of augite and pigeonite. Plagioclase occurs interstitially, and is sometimes "subpoikililitic". The mesostasis of 12016 includes grains of fayalite, silica and phosphate in a cryptocrystalline matrix of devitrified glass.

Neal et al. (1994) found identical mode to that determined by Dungan and Brown (1977).

Mineralogy

Olivine: The core of a large olivine phenocryst is Fo₆₇, but olivine apparently re-equilibrated.

Pyroxene: The composition of pyroxene in 12016 is given in figure 3. The cores of pyroxene are a complex mixture of augite and low-Ca pyroxene (not understood).

Plagioclase: Feldspar is normally zoned An_{90-80} with significant Or content at rim adjacent to mesostasis (Dungan and Brown).

Opaques: Ulvöspinel and ilmenite in 12016 were analyzed by Dungan and Brown.

Metal: Metal grains with up to 10 wt % Ni are reported (figure 4).

Chemistry

The chemical composition of 12016 has been determined by Rancitelli et al. (1971), Rhodes et al. (1977) and Neal et al. (1994) (Table 1 and figures 2,5).

Radiogenic age dating

12016 has not been dated.

Cosmogenic isotopes and exposure ages

Rancitelli et al. (1971) determined the cosmic ray induced activity of ²²Na (44 dpm/kg), ²⁶Al (75 dpm/kg), ⁴⁶Sc (5.6 dpm/kg), ⁵⁴Mn (36 dpm/kg) and ⁵⁶Co (14 dpm/kg).

Processing

A large piece (,7) was cut off of 12016 in 1976 (no slab).

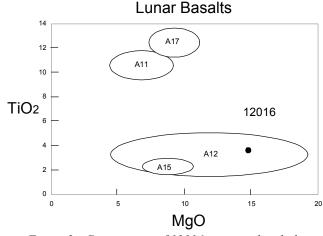


Figure 2: Composition of 12016 compared with that of other lunar basalts.

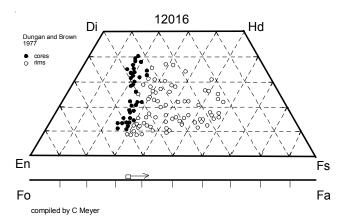


Figure 3: Pyroxene composition of 12016 (adapted from Dungan and Brown 1977).

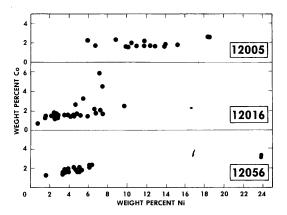


Figure 4: Compositions of metal grains in 12016 (from Dungan and Brown 1977).

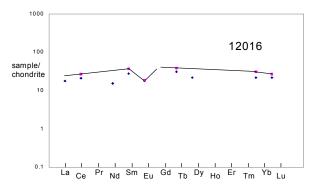


Figure 5: Normalized rare-earth-element diagram for 12016 (data from Neal et al. 1994 and Rhodes et al. 1977).

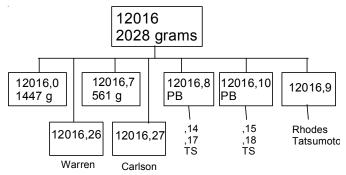

Mineralogical Mode for 12016							
	Neal et	Dungan and					
	al. 1994	Brown 1977					
Olivine	12	12					
Pyroxene	52.1	52.1					
Plagioclase	29.1	29.1					
Ilmenite	4.8	4.8					
Chromite +Usp	1.6	1.6					
mesostasis	0.6	0.6					
"silica"							

Table 1. Chemical composition of 12016.

reference	Neal94		Rhodes	77	Rancitelli7	1
weight SiO2 % TiO2	.666 g	(2)	42.78 4.02	(c)		
Al2O3	3.5 8.2	(a) (a)	7.23	(c)		
FeO MnO	22.2 0.252	(a) (a)	22.64 0.3	(c)		
MgO	15.1	(a)	12.65	(c)		
CaO Na2O	8.2 0.258	(a) (a)	8.42 0.22	(c) (a)		
K2O	0.049	(a)	0.06	(c)	0.053	(d)
P2O5 S %			0.08 0.08	(c)		
sum						
Sc ppm V	49 153	(a) (a)	49.4	(a)		
Cr	3790	(a)		(a)		
Co Ni	54.3 78	(a) (a)		(a) (a)		
Cu		()		()		
Zn Ga						
Ge ppb As						
Se						
Rb Sr	85	(a)	126	(c)		
Υ		(α)	45	(c)		
Zr Nb			117 6.1	(c)		
Mo				` ,		
Ru Rh						
Pd ppb Ag ppb						
Cd ppb						
In ppb Sn ppb						
Sb ppb						
Te ppb Cs ppm						
Ba La	4.3	(2)	59	(b)		
Ce	12.7	(a) (a)	16.2	(a)		
Pr Nd	7	(a)				
Sm	4.1	(a)		(a)		
Eu Gd	1.04	(a)	1.06	(a)		
Tb Dy	1.13 5.5	(a) (a)	1.42	(a)		
Ho	5.5	(a)				
Er Tm						
Yb	3.6	(a)		(a)		
Lu Hf	0.53 3	(a) (a)	0.67 6.3	(a) (a)		
Та	0.26	(a)		(4)		
W ppb Re ppb						
Os ppb						
Ir ppb Pt ppb						
Au ppb Th ppm	0.47	(a)			0.57	(d)
U ppm			10140	-)) (0.157	(d)
technique	(a) INAA	ı, (b)	IUMS, (;) XI	чг, (a) radia	tion counting.

List of Photo #s for 12016

S69-60718 - 60726	B & W mug
S69-64081	color
S75-33937 - 33941	color
S75-33965	sawn surface

References for 12016

Dungan M.A. and Brown R.W. (1977) The petrology of the Apollo 12 basalt suite. *Proc.* 8th Lunar Sci. Conf. 1339-1381.

LSPET (1970) Preliminary examination of lunar samples from Apollo 12. *Science* **167**, 1325-1339.

Neal C.R., Hacker M.D., Snyder G.A., Taylor L.A., Liu Y.-G. and Schmitt R.A. (1994a) Basalt generation at the Apollo 12 site, Part 1: New data, classification and re-evaluation. *Meteoritics* **29**, 334-348.

Neal C.R., Hacker M.D., Snyder G.A., Taylor L.A., Liu Y.-G. and Schmitt R.A. (1994b) Basalt generation at the Apollo 12 site, Part 2: Source heterogeneity, multiple melts and crustal contamination. *Meteoritics* **29**, 349-361.

Rancitelli L.A., Perkins R.W., Felix W.D. and Wogman N.A. (1971) Erosion and mixing of the lunar surface from cosmogenic and primordial radionuclide measurement in Apollo 12 lunar samples. *Proc.* 2nd *Lunar Sci. Conf.* 1757-1772.

Rhodes J.M., Blanchard D.P., Dungan M.A., Brannon J.C., and Rodgers K.V. (1977) Chemistry of Apollo 12 mare basalts: Magma types and fractionation processes. *Proc.* 8th *Lunar Sci. Conf.* 1305-1338.