12045 Ilmenite Basalt 63 grams

Figure 1: Photo of 12045 showing rounded surface with many zap pits due to micrometeorite bombardment. NASA #S70-19002. *Sample is 4.5 cm across.*

Introduction

12045 is a small flat rock with lots of micrometeorite craters.

Petrography

Dungan and Brown (1977) compare 12045 with olivine vitrophyre 12008. Like 12008, 12045 has glomerophyric aggregates of early-formed olivine phenocrysts, spinel grains and rare metal droplets. It also has elongate non-skeletal phenocrysts of titanoaugite. These phenocryst assemblages are set in a variolitic groundmass of acicular pyroxene, plagioclase, silica, ilmenite, troilite and metal. The ilmenite is highly skeletal and occurs as parallel sets of thin platelets. Thus 12045 appears to be a more crystalline, less glassy version of 12008.

Mineralogical Mode for 12045					
	Neal et				
	al. 1994				
Olivine	8.8				
Pyroxene	57				
Plagioclase	20.6				
Ilmenite					
Chromite +Usp					
mesostasis	5.7				
"silica"	0.6				

Figure 2: Faded photomicrograph of thin section 12045,6 showing olivine pheocrysts in groundmass cut by fine, parrallel needles of ilmenite. NASA S70-50032. Plane polarized light. Scale about 3 mm.

Figure 3: Photomicrograph of thin section 12045,7 (plane-polarized and cross-nicols). Note feathery pyroxene. NASA#S70-17968-969. 2.7 mm across.

Mineralogy

Olivine: Dungan and Brown (1977) report that Fo_{74} is the most magnesian olivine in 12045.

Pyroxene: Dungan and Brown (1977) present pyroxene compositions in 12045 in figure 3.

Ilmenite: The groundmass of 12045 is riddled with fine ilmenite needles in odd parallel alignment (figure 2).

Chemistry

The chemical composition of 12045 has been determined by Rhodes et al. (1977), Nyquist et al. (1979) and Snyder et al. (1997).

Radiogenic age dating

Snyder et al. (1997) reported the isotopic composition of Sr and Nd.

Figure 4: Pyroxene composition of 12045 (adapted from Dungan and Brown 1977).

Figure 5: Normalized rare-earth-element diagram for 12045 (data from Nyquist et al. 1979).

Figure 6: Composition of 12045 compared with other lunar basalts.

List of Photo #s for 12045

S70-17966 - 17971	TS
S70-19002 - 19026	B & W mug
S70-48255 - 48264	color
S70-50032 - 50035	TS

Table 1. Chemical composition of 12045.

reference weiaht	Rhodes77		Nyquist79 50 ma		Snyder97		Neal2001	
SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % <i>sum</i>	42.3 4.78 8.06 22.09 0.29 11.63 9.09 0.26 0.07 0.09 0.09	(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	0.062	(b)	42.3 4.78 8.06 22.09 0.29 11.63 9.09 0.26 0.07 0.09			
Sc ppm V	54	(a)					60 162	(d) (d)
Cr Co Ni Cu Zn Ga Ge ppb As	4060 52 40	(a) (a) (a)			3800 55.9 56.1 16.4 9.98 3.83	(d) (d) (d) (d) (d)	3757 53 51 20 29 3.37	(d) (d) (d) (d) (d) (d)
Rb	100	(-)	0.717	(b)	0.709	(d)	0.88	(d)
Sr Y Za	136 50	(C) (C)	143	(D)	49.7	(d) (d)	151 57	(d) (d)
Zr Nb Mo Ru Rh	5.3	(c) (c)			109.9 5.17	(d) (d)	125 6.8	(d) (d)
Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb					398	(d)		
Cs ppm Ba	52	(b)	52.7	(b)	0.038 52.9	(d) (d)	0.02 57	(d) (d)
La Ce	17.4	(a)	16.2	(b)	6.65 17.3	(d) (d)	5.6 17	(d) (d)
Pr Nd			14 8	(b)	2.83 15 1	(d) (d)	2.93 14 8	(d) (d)
Sm	5.6	(a)	5.48	(b)	5.64	(d)	5.54	(d)
Eu Gd	1.19	(a)	1.28 7.69	(b) (b)	1.06 6.04	(d) (d)	1.27 7.97	(d) (d)
Tb	1.51	(a)	o ==	. ,	1.26	(d)	1.45	(d)
Бу Но			9.57	(D)	7.74 1.6	(d) (d)	9.79 1.98	(d) (d)
Er			5.66	(b)	4.41	(d)	5.74	(d)
im Yb	5.1	(a)	4.94	(b)	0.63 4.25	(d) (d)	0.8 5.44	(d) (d)
Lu	0.73	(a)	0.721	(b)	0.58	(d)	0.68	(d)
Hf Ta	4.5	(a)			0 274	(d)	4.17 0.38	(d) (d)
W ppb					0	()	90	(d)
Re ppb								
lr ppb								
Pt ppb								
Th ppm					0.679	(d)	0.64	(d)
U ppm	(-) 1816				0.176	(d)	0.17	(d)
tecnnique	(a) INAA	۱, (D)	т <i>и</i> мS, (;)X	κκ <i>κ</i> , (d)	ICP-I	VIS	

References for 12045

Dungan M.A. and Brown R.W. (1977) The petrology of the Apollo 12 basalt suite. *Proc.* 8th *Lunar Sci. Conf.* 1339-1381.

Neal C.R. (2001) Interior of the moon: The presence of garnet in the primitive deep lunar mantle. *J. Geophys. Res.* **106**, 27865-27885.

Neal C.R., Hacker M.D., Snyder G.A., Taylor L.A., Liu Y.-G. and Schmitt R.A. (1994a) Basalt generation at the Apollo 12 site, Part 1: New data, classification and re-evaluation. *Meteoritics* **29**, 334-348.

Neal C.R., Hacker M.D., Snyder G.A., Taylor L.A., Liu Y.-G. and Schmitt R.A. (1994b) Basalt generation at the Apollo 12 site, Part 2: Source heterogeneity, multiple melts and crustal contamination. *Meteoritics* **29**, 349-361.

Nyquist L.E., Bansal B.M., Wooden J. and Wiesmann H. (1977) Sr-isotopic constraints on the peterogenesis of Apollo 12 mare basalts. *Proc.* 8th *Lunar Sci. Conf.* 1383-1415.

Nyquist L.E., Shih C.-Y., Wooden J.L., Bansal B.M. and Wiesmann H. (1979) The Sr and Nd isotopic record of Apollo 12 basalts: Implications for lunar geochemical evolution. *Proc.* 10th Lunar Planet. Sci. Conf. 77-114.

Rhodes J.M., Blanchard D.P., Dungan M.A., Brannon J.C., and Rodgers K.V. (1977) Chemistry of Apollo 12 mare basalts: Magma types and fractionation processes. *Proc.* 8th *Lunar Sci. Conf.* 1305-1338.

Snyder G.A., Neal C.R., Taylor L.A. and Halliday A.N. (1997a) Anataxis of lunar cumulate mantle in time and space: Clues from trace-element, strontium and neodymium isotopic chemistry of parental Apollo 12 basalts. *Geochim. Cosmochim. Acta* **61**, 2731-2747.