12077 Olivine Basalt 22.6 grams

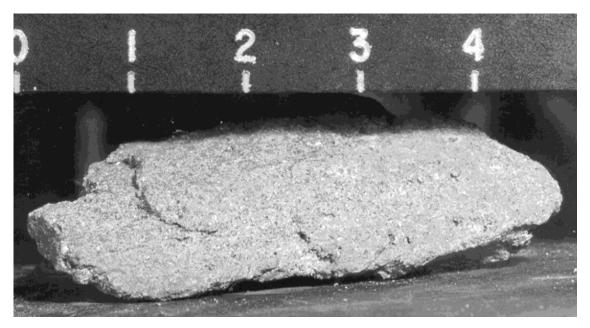


Figure 1: Photo of 12077. Scale is in cm. Sample is 4 cm. NASA # S69-61838.

Introduction

12077 is a fine-grained olivine basalt with a high modal percentage of pyroxene. It has a few micrometeorite carters (figure 1).

Petrography

Neal et al. (1994) describe 12077 as an olivine basalt with large olivine phenocrysts (1 mm) set in a subophitic to variolitic groundmass consisting of intergrown pyroxene, plagioclase, ilmenite, glass (figure 2). Chromite inclusions are reportedly only found in pyroxene, but not in olivine.

Mineralogy

Olivine: Olivine phenocrysts in 12077 have cores Fo_{73} with rims ranging to Fo_{53} . Olivine contains melt inclusions (Neal et al. 1994), is often embayed and is overgrown by pyroxene.

Pyroxene: Pyroxene compositions are shown in figure 3. Pyroxene includes melt inclusions.

Plagioclase: Plagioclase is An₉₂₋₈₈.

Metal: Metallic iron grains in 12077 have about 6 wt. % Ni and 1.5 wt % Co (figure 4).

Chemistry

The chemical composition of 12077 has been determined by Neal et al. (1994).

Mineralogical Mode for 12077

Neal et
al. 1994
16.6
61.7
19.3
0.4
1.1
0.7

Figure 2: Texture of 12077. Figure 2f from Neal et al. (1994). Scale is 0.5 mm.

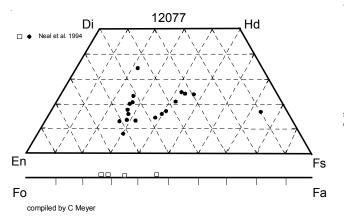
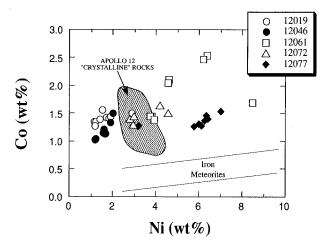



Figure 3 : Pyroxene and olivine composition of 12077 (adapted loosely from Neal et al. 1994).

Figure 4: Composition of iron grains in 12077 (from Neal et al. 1994).

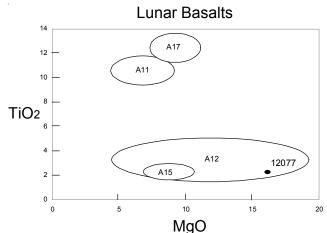
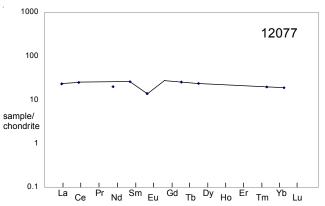



Figure 5: Composition of 12077 compared with other luanr basalts.

Figure 6: Normalized rare-earth-element diagram for 12077 (data from Neal et al. 1994).

Radiogenic age dating

Not dated.

Other Studies

Bogard et al. (1971) reported the content and isotopic composition of rare gases in 12077.

There are 2 thin sections.

List of Photo #s for 12077

S69-61835 - 61858 B & V

B & W mug

Table 1. Chemical composition of 12077. References for 12077				
reference weight SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum			Bogard D.D., Funkhouser J.G., Schaeffer O.A. and Zahringer J. (1971) Noble gas abundances in lunar material-cosmic ray spallation products and radiation ages from the Sea of Tranquillity and the Ocean of Storms. <i>J. Geophys. Res.</i> 76 , 2757-2779.	
	0.267 (a) 15.7 (a) 7.7 (a) 0.202 (a) 0.05 (a)	James O.B. and Wright T.L. (1972) Apollo 11 and 12 mare basalts and gabbros: Classification, compositional variations and possible petrogenetic relations. <i>Geol. Soc. Am. Bull.</i> 83 , 2357-2382.		
Sc ppm V Cr	41.4 197 5050	(a) (a) (a)	LSPET (1970) Preliminary examination of lunar samples from Apollo 12. <i>Science</i> 167 , 1325-1339.	
	59.5 (a) 125 (a)	(a)	Neal C.R., Hacker M.D., Snyder G.A., Taylor L.A., Liu YG. and Schmitt R.A. (1994a) Basalt generation at the Apollo 12 site, Part 1: New data, classification and re-evaluation. <i>Meteoritics</i> 29 , 334-348.	
Se Rb Sr Y Zr Nb Mo			Neal C.R., Hacker M.D., Snyder G.A., Taylor L.A., Liu YG. and Schmitt R.A. (1994b) Basalt generation at the Apollo 12 site, Part 2: Source heterogeneity, multiple melts and crustal contamination. <i>Meteoritics</i> 29 , 349-361.	
Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb Cs ppm Ba			Papike J.J., Hodges F.N., Bence A.E., Cameron M. and Rhodes J.M. (1976) Mare basalts: Crystal chemistry, mineralogy and petrology. <i>Rev. Geophys. Space Phys.</i> 14, 475-540.	
La Ce Pr	5.5 15.1	(a) (a)		
Nd	9	(a)		
Sm Eu	3.8 0.8	(a) (a)		
Gd Tb	0.93	(a)		
Dy Ho Er Tm	5.8	(a)		
Yb	3.2	(a)		
Lu Hf	0.46 2.5	(a) (a)		
Ta Ta W ppb Re ppb Os ppb Ir ppb Pt ppb Au ppb	2.5 0.45	(a) (a)		
Th ppm U ppm	0.65	(a)		
technique	(a) INA.	(a) INAA,		

Lunar Sample Compendium C Meyer 2011