# Meteorite

Volume 19, Number 2

August 1996

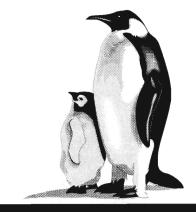
### **New Meteorites**

This newsletter announces the availability of 194 new meteorites, mostly from the 1994 ANSMET collection. It also announces the first 8 meteorites from the 1995 collection. Included among these samples are 3 irons, 2 mesosiderites, 2 carbonaceous chondrites, 3 type 3 ordinary chondrites and 6 achondrites (1 ureilite and 5 HED). The most unusual is diogenite GRO95555. It has the mineralology of a diogenite, but its unbrecciated, unshocked granular texture is unique. Stay tuned to our web page for further information.

### Life on Mars?

NASA announced last week that Antarctic meteorite ALH84001 contains possible evidence of past life on Mars. The evaluation of these findings will no doubt occupy our scientific community in the months and years to come. This meteorite was reclassified as martian in 1993 and subsequent studies showed it to be unusual in its ancient age and relatively large carbonate weathering products. Our web page contains lots of information on martian meteorites and ALH84001. Stay tuned to the web for updates and plans for allocation and future studies.

# Score: JSC Meteorite Lab 0 Antarctica 1


After 18 years in curation at JSC Robbie Score left us in May for a new job with Antarctic Support Associates in Denver and McMurdo. Robbie was involved in setting up meteorite processing at JSC. She worked as a processor and later became meteorite lab manager and MWG Secretary. She was well known to the meteorite community and helped many researchers formulate requests and select samples. Robbie's last meteorite description appears in this newsletter. She left us something else to remember her by. One of the field team members mentioned that Robbie was the one who picked up martian meteorite ALH84001 in Antarctica. Now Robbie is a celebrity who has appeared in newspapers, radio and TV. We miss her already and wish her all the best in her new job.

A periodical issued by the Meteorite Working Group to inform scientists of the basic characteristics of specimens recovered in the Antarctic.

Edited by Cecilia Satterwhite and Marilyn Lindstrom, Code SN2, NASA Johnson Space Center, Houston, Texas 77058

### Inside this Issue

| Sample Request Guidelines 2         |
|-------------------------------------|
| Antarctic Meteorite Laboratory      |
| Contacts 2                          |
| Location Abbreviations and Map 3    |
| Table 1: Alpha List of New          |
| Meteorites 4                        |
| Table 2: Newly Classified           |
| Specimens 8                         |
| Notes to Tables 1 & 2 9             |
| Table 3: Tentative Pairings for New |
| Specimens9                          |
| Petrographic Descriptions10         |
| Table 4: NTL Data for Antarctic     |
| Meteorites14                        |
| Meteorites On-Line 16               |



Sample Request Deadline September 10, 1996

MWG Meets September 27-28, 1996

# Sample Request Guidelines.

All sample requests should be made in writing to:

Secretary, MWG SN2/Office of the Curator NASA Johnson Space Center Houston, TX 77058 USA

Requests that are received by the MWG Secretary before Sept. 10, 1996, will be reviewed at the MWG meeting on Sept. 27-28, 1996, to be held in Washington, DC. Requests that are received after the Sept. 10 deadline may possibly be delayed for review until the MWG meets again in the Spring of 1997. PLEASE SUBMIT YOUR REQUESTS ON TIME. Questions pertaining to sample requests can be directed in writing to the above address or can be directed to the curator by phone, FAX, or e-mail.

Requests for samples are welcomed from research scientists of all countries, regardless of their current state of funding for meteorite studies. Graduate student requests should be initialed or countersigned by a supervising scientist to confirm access to facilities for analysis. All sample requests will be reviewed in a timely

manner. Those requests that do not meet the JSC Curatorial Guidelines will be reviewed by the Meteorite Working Group (MWG), a peer-review committee which meets twice a year to guide the collection, curation, allocation, and distribution of the U.S. collection of Antarctic meteorites. Issuance of samples does not imply a commitment by any agency to fund the proposed research. Requests for financial support must be submitted separately to the appropriate funding agencies. As a matter of policy, U.S. Antarctic meteorites are the property of the National Science Foundation and all allocations are subject to recall.

Each request should accurately refer to meteorite samples by their respective identification numbers. Specific requirements for sample types within individual specimens, or special handling or shipping procedures should be explained in each request. Each request should include a brief justification, which should contain:

1) what scientific problem will be addressed; 2) what analytical approach will be used; 3) what sample masses are required; 4) evidence that the proposed analyses can be performed

by the requester or collaborators; and 5) why Antarctic meteorites are best suitable for the investigation. For new or innovative investigations, proposers are encouraged to supply additional detailed information in order to assist the MWG. Requests for thin sections which will be used in destructive procedures such as ion probing, etching, or even repolishing, must be stated explicitly. Consortium requests must be initialed or countersigned by a member of each group in the consortium. All necessary information, in most cases, should be condensable into a one-or two-page letter.

Samples can be requested from any meteorite that has been made available through announcement in any issue of the *Antarctic Meteorite Newsletter* (beginning with 1 (1) in June, 1978). Many of the meteorites have also been described in five *Smithsonian Contr. Earth Sci.:* Nos. 23, 24, 26, 28, and 30. A table containing all classifications as of December 1993 is published in *Meteoritics* 29, p. 100-142 and updated as of April 1996 in *Meteoritics and Planetary Science* 31, p. A161-A174.

### Antarctic Meteorite Laboratory Contact Numbers

Marilyn Lindstrom Mail code SN2 NASA Johnson Space Center Houston, Texas, 77058

(713) 483-5135

mlindstrom@snmail.jscnasa.gov

Cecilia Satterwhite
Wail code SN2
NASA Johnson Space Center
Houston, Texas 77058

(713) 483-6776

satter@snmall.jsc.nasa.gov

FAX: (713) 483-5347

# New Meteorites.

#### From 1993-1995 Collections

Pages 4-13 contain preliminary descriptions and classifications of meteorites that were completed since publication of issue 19(1), February 1996. Specimens of special petrologic type (carbonaceous chondrite, unequilibrated ordinary chondrite, achondrite, etc.) are represented by separate descriptions unless they are paired with previously described meteorites. However, some specimens of non-special petrologic type are listed only as single line entries in Table 1. For convenience, new specimens of special petrological type are also recast in Table 2.

Macroscopic descriptions of stony meteorites were performed at NASA/ JSC. These descriptions summarize hand-specimen features observed during inital examination. Classification is based on microscopic petrography and reconnaissance-level electron microprobe analyses using polished sections prepared from a small chip of each meteorite. For each stony meteorite the sample number assigned to the preliminary examination section is included. In some cases, however, a single microscopic description was based on thin sections of several specimens believed to be members of a single fall.

Meteorite descriptions contained in this issue were contributed by the following individuals:

Kathleen McBride, Cecilia Satterwhite, Carol Schwarz, and Roberta Score Antarctic Meteorite Laboratory NASA Johnson Space Center Houston, Texas

Roy Clark, Brian Mason and Tim McCoy Department of Mineral Sciences U.S. National Museum of Natural History Smithsonian Institution Washington, D.C.

#### **Antarctic Meteorite Locations**

ALH - Allan Hills

BEC — Beckett Nunatak

BOW - Bowden Neve

BTN — Bates Nunataks

DAV — David Glacier

DOM — Dominion Range

DRP — Derrick Peak

EET — Elephant Moraine

GEO — Geologists Range

GRO — Grosvenor Mountains

HOW -- Mt. Howe

ILD — Inland Forts

LAP — LaPaz Ice Field

LEW — Lewis Cliff

LON — Lonewolf Nunataks

MAC — MacAlpine Hills

MBR - Mount Baldr

MCY — MacKay Glacier

MET - Meteorite Hills

MIL - Miller Range

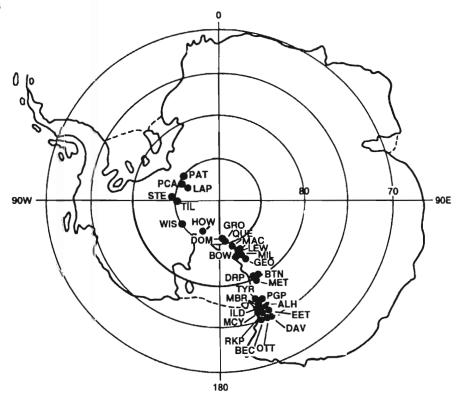
OTT — Outpost Nunatak

PAT — Patuxent Range

PCA — Pecora Escarpment

PGP — Purgatory Peak

QUE — Queen Alexandria Range


RKP — Reckling Peak

STE - Stewart Hills

TIL — Thiel Mountains

TYR — Taylor Glacier

WIS — Wisconsin Range



### Information on the U.S. Collection of Antarctic Meteorites

Number of meteorites: Number of meteorites classified: 7857

7492

Table 1: List of Newly Classified Antarctic Meteorites\*\*

| Sample<br>Number | Weight<br>(g) | Classification | Weathering | Fracturing | % Fa  | % Fs  |
|------------------|---------------|----------------|------------|------------|-------|-------|
| QUE 93757 ~      | 1.3           | L6 CHONDRITE   | B/C        | A          |       |       |
| ALH 94001        | 196.5         | L4 CHONDRITE   | A/Be       | Α          | 25    | 21    |
| ALH 94002 ~      | 8.9           | L6 CHONDRITE   | A/B        | Α          |       |       |
| ALH 94003        | 90.2          | H5 CHONDRITE   | В          | Α          | 18    | 16    |
| ALH 94004 ~      | 5.6           | H5 CHONDRITE   | Be         | A/B        |       |       |
| ALH 94005        | 8.2           | H5 CHONDRITE   | В          | Α          | 19    | 16    |
| ALH 94006        | 13.5          | H6 CHONDRITE   | A/B        | Α          | 18    | 16    |
| ALH 94007        | 1.2           | L3.4 CHONDRITE | С          | B/C        | 7-38  | 1-21  |
| ALH 94008 ~      | 6.3           | H6 CHONDRITE   | Α          | Α          |       |       |
| ALH 94009 ~      | 25.3          | L6 CHONDRITE   | В          | Α          |       |       |
| ALH 94010 ~      | 8.0           | L6 CHONDRITE   | Α          | Α          |       |       |
| ALH 94011 ~      | 2.4           | L6 CHONDRITE   | A/B        | Α          |       |       |
| ALH 94012 ~      | 9.0           | L4 CHONDRITE   | A/B        | A/B        |       |       |
| ALH 94013 ~      | 10.6          | L6 CHONDRITE   | В          | A/B        |       |       |
| ALH 94014 ~      | 22.9          | L6 CHONDRITE   | A/B        | Α          |       |       |
| ALH 94015 ~      | 8.1           | L6 CHONDRITE   | В          | Α          |       |       |
| ALH 94016 ~      | 9.8           | L6 CHONDRITE   | Α          | Α          |       |       |
| ALH 94017 ~      | 9.6           | L6 CHONDRITE   | В          | A/B        |       |       |
| ALH 94018 ~      | 36.3          | L6 CHONDRITE   | Α          | В          |       |       |
| ALH 94019 ~      | 6.1           | L6 CHONDRITE   | Α          | В          |       |       |
| ALH 94020 ~      | 14.3          | L6 CHONDRITE   | A/B        | В          |       |       |
| QUE 94610        | 2.6           | H5 CHONDRITE   | В          | В          | 18    | 16    |
| QUE 94611 ~      | 13.6          | L6 CHONDRITE   | В          | B/C        |       |       |
| QUE 94612 ~      | 1.2           | LL6 CHONDRITE  | В          | B/C        |       |       |
| QUE 94613        | 5.1           | UREILITE       | В          | В          | 22-24 | 19    |
| QUE 94614        | 2.5           | MESOSIDERITE   | B/C        | B/C        |       | 22-37 |
| QUE 94615 ~      | 26.8          | L5 CHONDRITE   | A/B        | A/B        |       |       |
| QUE 94616        | 13.6          | HOWARDITE      | B/C        | B/C        | 59-62 | 17-58 |
| QUE 94617 ~      | 24.7          | L5 CHONDRITE   | A/B        | В          |       |       |
| QUE 94618 ~      | 28.4          | L5 CHONDRITE   | A/B        | В          |       |       |
| QUE 94619 ~      | 16.2          | L5 CHONDRITE   | A/B        | В          |       |       |
| QUE 94620 ~      | 59.9          | L5 CHONDRITE   | В          | В          |       |       |
| QUE 94621 ~      | 47.2          | L5 CHONDRITE   | В          | Α          |       |       |
| QUE 94622 ~      | 17.7          | L5 CHONDRITE   | В          | Α          |       |       |
| QUE 94623 ~      | 114.8         | L6 CHONDRITE   | В          | Α          |       |       |
| QUE 94624 ~      | 28.6          | LL6 CHONDRITE  | A/B        | Α          |       |       |
| QUE 94625 ~      | 27.9          | L5 CHONDRITE   | В          | Α          |       |       |
| QUE 94626        | 30.5          | H5 CHONDRITE   | B/C        | В          | 18    | 16    |
| QUE 94627        | 30.5          | IRON           | В          | Α          |       |       |
| QUE 94628 ~      | 7.3           | LL6 CHONDRITE  | A/B        | A          |       |       |
| QUE 94629 ~      | 67.6          | L5 CHONDRITE   | В          | В          |       |       |
| QUE 94630 ~      | 56.9          | L5 CHONDRITE   | В          | В          |       |       |
| QUE 94631 ~      | 15.7          | LL6 CHONDRITE  | A/B        | A          |       |       |
| QUE 94632 ~      | 34.3          | L5 CHONDRITE   | В          | В          |       |       |
| QUE 94633 ~      | 63.9          | L5 CHONDRITE   | Be         | В          |       |       |
| QUE 94634 ~      | 56.9          | L5 CHONDRITE   | В          | В          |       |       |

| Sample<br>Number           | Weight<br>(g) | Classification               | Weathering | Fracturing | % Fa | % Fs  |  |
|----------------------------|---------------|------------------------------|------------|------------|------|-------|--|
| QUE 94635 ~                | 20.5          | L5 CHONDRITE                 | A /D       | ٨          |      |       |  |
| QUE 94636 ~                | 8.1           | L5 CHONDRITE                 | A/B<br>B/C | A<br>B     |      |       |  |
| QUE 94637                  | 0.2           | H5 CHONDRITE                 | В          |            | 10   | 17    |  |
| QUE 94638                  | 6.6           |                              |            | A          | 19   | 17    |  |
|                            |               | LL6 CHONDRITE                | A/B        | A          | 30   | 24    |  |
| QUE 94639<br>QUE 94640 ~   | 0.6           | MESOSIDERITE<br>L6 CHONDRITE | B/Ce       | A          |      | 28-48 |  |
| QUE 94641 ~                | 1.1           |                              | B/C        | A<br>A/D   |      |       |  |
| QUE 94642 ~                | 63.6          | L5 CHONDRITE                 | A/B        | A/B        |      |       |  |
|                            | 35.9          | L5 CHONDRITE                 | A/B        | A/B        |      |       |  |
| QUE 94643 ~                | 11.1<br>0.1   | L6 CHONDRITE                 | B/C        | A          | 10   | 10    |  |
| QUE 94644                  |               | H5 CHONDRITE                 | B          | A          | 18   | 16    |  |
| QUE 94645 ~                | 26.4          | L5 CHONDRITE                 | A/B        | A<br>A/D   |      |       |  |
| QUE 94646 ~                | 26.3          | L5 CHONDRITE                 | A/B        | A/B        | 05   | 01    |  |
| QUE 94647                  | 16.2          | L6 CHONDRITE                 | В          | A<br>A /D  | 25   | 21    |  |
| QUE 94648 ~                | 23.7          | L5 CHONDRITE                 | A/B        | A/B        | 10   | 10    |  |
| QUE 94649                  | 0.7           | H6 CHONDRITE                 | B/C        | A          | 19   | 16    |  |
| QUE 94650 ~                | 1.1           | LL6 CHONDRITE                | В          | A          |      |       |  |
| QUE 94651 ~                | 0.6           | L5 CHONDRITE                 | В          | A          | 10   | 10    |  |
| QUE 94652                  | 8.0           | H5 CHONDRITE                 | B/C        | A          | 18   | 16    |  |
| QUE 94653                  | 14.7          | H5 CHONDRITE                 | B/C        | A          | 18   | 16    |  |
| QUE 94654 ~                | 11.8          | LL6 CHONDRITE                | A/Be       | A          |      |       |  |
| QUE 94655 ~                | 36.1          | L5 CHONDRITE                 | В          | В          |      |       |  |
| QUE 94656 ~                | 18.7          | L5 CHONDRITE                 | В          | A          |      |       |  |
| QUE 94657 ~                | 27.2          | LL6 CHONDRITE                | Be         | В          |      |       |  |
| QUE 94658 ~                | 25.8          | L5 CHONDRITE                 | Be         | A          |      |       |  |
| QUE 94659 ~                | 18.8          | L5 CHONDRITE                 | В          | A          |      |       |  |
| QUE 94660 ~                | 37.5          | L5 CHONDRITE                 | В          | A          |      |       |  |
| QUE 94661 ~                | 57.9          | L5 CHONDRITE                 | В          | A (D       |      |       |  |
| QUE 94662 ~                | 10.1          | L5 CHONDRITE                 | B          | A/B        |      |       |  |
| QUE 94663 ~                | 24.8          | LL6 CHONDRITE                | A/B        | A          |      |       |  |
| QUE 94664 ~                | 10.7          | L5 CHONDRITE                 | Be         | A          |      |       |  |
| QUE 94665 ~                | 38.7          | L5 CHONDRITE                 | Be         | В          | 10   | 10    |  |
| QUE 94666                  | 4.1           | H5 CHONDRITE                 | В          | A          | 18   | 16    |  |
| QUE 94667 ~<br>QUE 94668 ~ | 32.1          | L5 CHONDRITE                 | В<br>В     | A          |      |       |  |
|                            | 7.0           | L5 CHONDRITE                 |            | A          | 10   | 10    |  |
| QUE 94669                  | 2.7           | H6 CHONDRITE                 | B/C        | A          | 18   | 16    |  |
| QUE 94670 ~                | 26.2          | LL6 CHONDRITE                | A          | A          |      |       |  |
| QUE 94671 ~                | 0.5           | L6 CHONDRITE                 | B/C        | A<br>A/D   | 10   | 10    |  |
| QUE 94672                  | 20.2          | H5 CHONDRITE                 | B/Ce       | A/B        | 18   | 16    |  |
| QUE 94673 ~                | 74.6          | L5 CHONDRITE                 | Be         | В          | 10   | 17    |  |
| QUE 94674<br>QUE 94675 ~   | 2.5           | H5 CHONDRITE<br>H6 CHONDRITE | B/C        | A          | 19   | 17    |  |
|                            | 1.2           | L5 CHONDRITE                 | B/C        | A<br>A /B  |      |       |  |
| QUE 94676 ~                | 33.0          |                              | В          | A/B        |      |       |  |
| QUE 94677 ~                | 55.9          | L5 CHONDRITE                 | В          | B          |      |       |  |
| QUE 94678 ~                | 13.1          | L5 CHONDRITE                 | B<br>B/C-  | A/B        | 10   | 177   |  |
| QUE 94679                  | 23.2          | H5 CHONDRITE                 | B/Ce       | A<br>^/B   | 19   | 17    |  |
| QUE 94680                  | 4.5           | L6 CHONDRITE                 | B/Ce       | A/B        | 24   | 20    |  |
| QUE 94681 ~                | 10.1          | L5 CHONDRITE                 | A/B        | A          | 10   | 16    |  |
| QUE 94682                  | 3.2           | H5 CHONDRITE                 | B/C        | A          | 18   | 16    |  |
| QUE 94683 ~                | 1.4           | L6 CHONDRITE                 | B/C        | A          |      |       |  |
| QUE 94684 ~                | 4.4           | L5 CHONDRITE                 | A/B        | A          |      |       |  |
| QUE 94685 ~                | 2.1           | H6 CHONDRITE                 | B/C        | A          | 10   | 40    |  |
| QUE 94686                  | 4.0           | H5 CHONDRITE                 | B/C        | Α          | 18   | 16    |  |

| Sample<br>Number | Weight (g) | Classification      | Weathering Fracturion | ng % Fa | % Fs |
|------------------|------------|---------------------|-----------------------|---------|------|
| QUE 94687        | 18.5       | H5 CHONDRITE        | B/C A                 | 19      | 17   |
| QUE 94688        | 10.6       | CV3 CHONDRITE       | В А                   | 1-33    | 1    |
| QUE 94689 ~      | 2.4        | L5 CHONDRITE        | A/B A                 |         |      |
| QUE 94690 ~      | 2.1        | L6 CHONDRITE        | B/Ce A                |         |      |
| QUE 94691 ~      | 9.6        | H6 CHONDRITE        | B/C A                 |         |      |
| QUE 94692        | 1.6        | H5 CHONDRITE        | B/C A                 | 19      | 17   |
| QUE 94693 ~      | 1.8        | H6 CHONDRITE        | B/C A                 |         |      |
| QUE 94694        | 16.8       | L5 CHONDRITE        | B/Ce A                | 25      | 21   |
| QUE 94695 ~      | 12.4       | L5 CHONDRITE        | B A/B                 |         |      |
| QUE 94696 ~      | 3.3        | L5 CHONDRITE        | B A/B                 |         |      |
| QUE 94697 ~      | 18.6       | L5 CHONDRITE        | B A/B                 |         |      |
| QUE 94698        | 10.7       | H5 CHONDRITE        | B/Ce A/B              | 19      | 17   |
| QUE 94699        | 5.6        | H5 CHONDRITE        | B/C A                 | 18      | 16   |
| QUE 94700 ~      | 3.5        | H6 CHONDRITE        | B/C A                 |         |      |
| QUE 94701 ~      | 2.7        | L5 CHONDRITE        | A/B A                 |         |      |
| QUE 94702 ~      | 1.9        | L6 CHONDRITE        | B/C A                 |         |      |
| QUE 94703 ~      | 9.5        | L5 CHONDRITE        | A/B A/B               |         |      |
| QUE 94704 ~      | 3.0        | L5 CHONDRITE        | B/C A                 |         |      |
| QUE 94705 ~      | 15.9       | L6 CHONDRITE        | A/B A                 |         |      |
| QUE 94706 ~      | 7.2        | L5 CHONDRITE        | A/B A                 |         |      |
| QUE 94707 ~      | 11.0       | L5 CHONDRITE        | A/B A                 |         |      |
| QUE 94708        | 3.6        | H5 CHONDRITE        | B/Ce A                | 19      | 17   |
| QUE 94709 ~      | 14.3       | L6 CHONDRITE        | A/B A                 |         |      |
| QUE 94710 ~      | 2.1        | H6 CHONDRITE        | B/Ce A                |         |      |
| QUE 94711 ~      | 0.9        | H6 CHONDRITE        | B/Ce A                |         |      |
| QUE 94712        | 4.7        | H5 CHONDRITE        | Ce A                  | 19      | 16   |
| QUE 94713 ~      | 2.2        | H6 CHONDRITE        | B/C A                 |         |      |
| QUE 94714 ~      | 118.8      | L5 CHONDRITE        | В В                   |         |      |
| QUE 94715 ~      | 30.1       | L5 CHONDRITE        | A/B A/B               |         |      |
| QUE 94716 ~      | 128.2      | L5 CHONDRITE        | B A/B                 |         |      |
| QUE 94717 ~      | 21.8       | LL6 CHONDRITE       | A/B A/B               |         |      |
| QUE 94718 ~      | 71.0       | L5 CHONDRITE        | Be A                  |         |      |
| QUE 94719 ~      | 141.1      | L6 CHONDRITE        | в А                   |         |      |
| QUE 94720 ~      | 39.5       | L5 CHONDRITE        | A/B A                 |         |      |
| QUE 94721 ~      | 5.9        | H6 CHONDRITE        | B/C A                 |         |      |
| QUE 94722        | 16.6       | H5 CHONDRITE        | B/C A                 | 18      | 16   |
| QUE 94723 ~      | 17.4       | L6 CHONDRITE        | B/C A                 |         |      |
| QUE 94724 ~      | 2.9        | H6 CHONDRITE        | B/C A                 |         |      |
| QUE 94725 ~      | 2.8        | L6 CHONDRITE        | B/C A                 |         |      |
| QUE 94726 ~      | 1.0        | L6 CHONDRITE        | B/Ce A                |         |      |
| QUE 94727        | 14.8       | H5 CHONDRITE        | B/C A                 | 18      | 16   |
| QUE 94728 ~      | 0.1        | <b>H6 CHONDRITE</b> | B/C A                 |         |      |
| QUE 94729 ~      | 14.9       | LL6 CHONDRITE       | B A                   |         |      |
| QUE 94730 ~      | 1.0        | L5 CHONDRITE        | A/B A                 |         |      |
| QUE 94731 ~      | 1.1        | L5 CHONDRITE        | A/B A                 |         |      |
| QUE 94732        | 7.4        | H5 CHONDRITE        | B/C A                 | 18      | 16   |
| QUE 94733 ~      | 2.4        | LL6 CHONDRITE       | A/B A                 |         |      |
| QUE 94734        | 11.2       | C2 CHONDRITE        | B A/B                 | 1-31    | 1-7  |
| QUE 94735 ~      | 1.1        | H6 CHONDRITE        | B/C A                 |         |      |
| QUE 94736 ~      | 0.3        | L6 CHONDRITE        | B/C A                 |         |      |
| QUE 94737 ~      | 2.4        | L5 CHONDRITE        | A/B A                 |         |      |
| QUE 94738        | 34.5       | H5 CHONDRITE        | B/C A/B               | 18      | 16   |
|                  |            |                     |                       | _       |      |

| Sample<br>Number                      | Weight<br>(g) | Classification         | Weathering  | Fracturing  | % Fa | % Fs   |
|---------------------------------------|---------------|------------------------|-------------|-------------|------|--------|
| T T T T T T T T T T T T T T T T T T T | (9)           | Oladomoation           | **Catholing | Tractaining | 7014 | 70 1 3 |
| QUE 94739 ~                           | 1.3           | L5 CHONDRITE           | A/B         | Α           |      |        |
| QUE 94740 ~                           | 17.9          | L5 CHONDRITE           | В           | A/B         |      |        |
| QUE 94742 ~                           | 5.7           | L6 CHONDRITE           | B/C         | A           |      |        |
| QUE 94743 ~                           | 0.9           | L6 CHONDRITE           | B/Ce        | A           |      |        |
| QUE 94744 ~                           | 11.2          | L5 CHONDRITE           | В           | A           |      |        |
| QUE 94745 ~                           | 1.6           | L5 CHONDRITE           | В           | A           |      |        |
| QUE 94746 ~                           | 2.8           | L6 CHONDRITE           | B/C         | A           |      |        |
| QUE 94747                             | 2.9           | H5 CHONDRITE           | В           | A           | 18   | 16     |
| QUE 94748 ~                           | 22.5          | L5 CHONDRITE           | В           | Α           |      |        |
| QUE 94749 ~                           | 23.6          | L5 CHONDRITE           | В           | В           |      |        |
| QUE 94750                             | 1.2           | H5 CHONDRITE           | B/C         | A           | 18   | 16     |
| QUE 94751                             | 6.7           | H5 CHONDRITE           | В           | Α           | 19   | 16     |
| QUE 94752 ~                           | 1.5           | L6 CHONDRITE           | В           | Α           |      |        |
| QUE 94753 ~                           | 28.8          | L5 CHONDRITE           | A/B         | A/B         |      |        |
| QUE 94754 ~                           | 3.0           | H6 CHONDRITE           | В           | Α           |      |        |
| QUE 94755 ~                           | 1.8           | H6 CHONDRITE           | B/C         | Α           |      |        |
| QUE 94757                             | 38.3          | H5 CHONDRITE           | B/C         | Α           | 18   | 16     |
| QUE 94758                             | 21.3          | LL6 CHONDRITE          | В           | Α           | 27   | 22     |
| QUE 94759 ~                           | 3.0           | LL6 CHONDRITE          | В           | A/B         |      |        |
| QUE 94760 ~                           | 5.3           | LL6 CHONDRITE          | Be          | A/B         |      |        |
| QUE 94761 ~                           | 0.6           | L6 CHONDRITE .         | B/Ce        | Α           |      |        |
| QUE 94762                             | 27.1          | H6 CHONDRITE           | B/C         | Α           | 19   | 17     |
| QUE 94763 ~                           | 5.0           | L6 CHONDRITE           | В           | Α           |      |        |
| QUE 94764                             | 7.3           | H5 CHONDRITE           | B/Ce        | Α           | 19   | 16     |
| QUE 94765 ~                           | 1.3           | H6 CHONDRITE           | B/Ce        | Α           |      |        |
| QUE 94766 ~                           | 5.8           | H6 CHONDRITE           | B/Ce        | A/B         |      |        |
| QUE 94767 ~                           | 23.6          | L6 CHONDRITE           | В           | В           |      |        |
| QUE 94768 ~                           | 4.7           | H6 CHONDRITE           | B/C         | Α           |      |        |
| QUE 94769 ~                           | 47.0          | L5 CHONDRITE           | В           | Α           |      |        |
| QUE 94770 ~                           | 22.6          | L5 CHONDRITE           | В           | В           |      |        |
| QUE 94771                             | 17.4          | H5 CHONDRITE           | B/C         | Α           | 17   | 15     |
| QUE 94772 ~                           | 0.7           | H6 CHONDRITE           | B/C         | Α           |      |        |
| QUE 94773 ~                           | 4.4           | L6 CHONDRITE           | B/C         | Α           |      |        |
| QUE 94774 ~                           | 32.1          | L6 CHONDRITE           | В           | В           |      |        |
| QUE 94775                             | 1.1           | L4 CHONDRITE           | В           | Α           | 24   | 20     |
| QUE 94776                             | 3.3           | H6 CHONDRITÉ           | B/C         | Α           | 19   | 17     |
| GRO 95511                             | 64.4          | IRON-OCTAHEDRITE       |             |             |      |        |
| GRO 95522                             | 962.5         | IRON-OCTAHEDRITE       |             |             |      |        |
| GRO 95533                             | 613.2         | EUCRITE (UNBRECCIATED) |             | Α           |      | 60-63  |
| GRO 95534                             | 17.9          | HOWARDITE              | A/B         | Α           |      | 20-53  |
| GRO 95535                             | 53.8          | HOWARDITE              | A/B         | Α           |      | 20-53  |
| GRO 95544                             | 626.0         | L3.5 CHONDRITE         | A/B         | Α           | 7-20 | 1-22   |
| GRO 95545                             | 142.1         | L3.5 CHONDRITE         | В           | Α           | 1-20 | 4-28   |
| GRO 95555                             | 250.6         | DIOGENITE (UNIQUE)     | A/B         | A/B         |      | 24     |
|                                       |               |                        |             |             |      |        |

Table 2: Newly Classified Specimens Listed By Type \*\*

| Sample<br>Number                    | Weight<br>(g)        | Classification                               | Weathering        | Fracturing    | % Fa         | % Fs                    |
|-------------------------------------|----------------------|----------------------------------------------|-------------------|---------------|--------------|-------------------------|
|                                     |                      | Acho                                         | ndrites           |               |              |                         |
| GRO 95555<br>GRO 95533              | 250.6<br>613.2       | DIOGENITE (UNIQUE)<br>EUCRITE (UNBRECCIATED) | A/B<br>A/B        | A/B<br>A      |              | 24<br>60-63             |
| QUE 94616<br>GRO 95534<br>GRO 95535 | 13.6<br>17.9<br>53.8 | HOWARDITE<br>HOWARDITE<br>HOWARDITE          | B/C<br>A/B<br>A/B | B/C<br>A<br>A | 59-62        | 17-58<br>20-53<br>20-53 |
| QUE 94613                           | 5.1                  | UREILITE                                     | В                 | В             | 22-24        | 19                      |
|                                     |                      | Carbonaceou                                  | ıs Chondrii       | tes           |              |                         |
| QUE 94734                           | 11.2                 | C2 CHONDRITE                                 | В                 | A/B           | 1-31         | 1-7                     |
| QUE 94688                           | 10.6                 | CV3 CHONDRITE                                | В                 | Α             | 1-33         | 1                       |
|                                     |                      | Chondrite                                    | es - Type 3       |               |              |                         |
| ALH 94007                           | 1.2                  | L3.4 CHONDRITE                               | С                 | B/C           | 7-38         | 1-21                    |
| GRO 95544<br>GRO 95545              | 626.0<br>142.1       | L3.5 CHONDRITE<br>L3.5 CHONDRITE             | A/B<br>B          | A             | 7-20<br>1-20 | 1-22<br>4-28            |
|                                     |                      | Iro                                          | ons               |               |              |                         |
| QUE 94627                           | 30.5                 | IRON                                         | В                 | Α             |              |                         |
| GRO 95511<br>GRO 95522              | 64.4<br>962.5        | IRON-OCTAHEDRITIE IRON-OCTAHEDRITIE          |                   |               |              |                         |
|                                     |                      | Stony                                        | y-Irons           |               |              |                         |
| QUE 94614<br>QUE 94639              | 2.5<br>0.6           | MESOSIDERITE<br>MESOSIDERITE                 | B/C<br>B/Ce       | B/C<br>A      |              | 22-37<br>28-48          |

### **Table 3: Tentative Pairings for New Specimens**

Table 3 summarizes possible pairings of the new specimens with each other and with previously classified specimens, based on descriptive data in this newsletter issue. Readers who desire a more comprehensive review of the meteorite pairings in the U.S. Antarctic collection should refer to the compilation provided by Dr. E.R. D. Scott, as published in issue 9(2) (June 1986). Possible pairings were updated in Meteoritical Bulletin No. 76, Meteoritics 29, 100-143 (1994).

#### **CV3 CHONDRITE**

QUE 94688 with QUE 93429

#### HOWARDITE

GRO 95534 and GRO 95535

#### **IRON**

QUE 94627 with QUE 94411

#### L3.5 CHONDRITE

GRO 95544 and GRO 95545

#### MESOSIDERITE

QUE 94614, 94639 with QUE 86900

#### **UREILITE**

QUE 94613 with QUE 93336

#### \*\*Notes to Tables 1 and 2:

#### "Weathering" Categories:

- A: Minor rustiness; rust haloes on metal particles and rust stains along fractures are minor.
- B: Moderate rustiness; large rust haloes occur or metal particles and rust stains on internal fractures are extensive.
- C: Severe rustiness; metal particles have been mostly stained by rust throughout.
- e: Evaporite minerals visible to the naked eye.

#### "Fracturing" Categories:

- A: Minor cracks; few or no cracks are conspicuous to the naked eye and no cracks penetrate the entire specimen.
- B: Moderate cracks; several cracks extend across exterior surfaces and the specimen can be readily broken along the cracks.
- C: Severe cracks; specimen readily crumbles along cracks that are both extensive and abundant.

# Petrographic Descriptions

Sample No.:ALH94007Location:Allan HillsDimensions (cm):1.5 x 1.0 x 0.75

Weight (g): 1.24

Meteorite Type: L3 Chondrite

(estimated L3.4)

#### <u>Macroscopic Description: Kathleen</u> McBride

The exterior surface of this meteorite is weathered brown with thin patches of fusion crust. Fractures penetrate the surface. The interior is brown with heavy oxidation and some metal visible.

### Thin Section (,2) Description: Brian Mason

The section shows numerous chondrules (up to 1.8 mm across), chondrule fragments, and mineral grains in a black matrix that contains a small amount of nickel-iron and troilite. The meteorite is considerably weathered, with limonitic staining and patches of brown limonite throughout the section. Microprobe analyses show olivine and pyroxene of variable composition: olivine, Fa<sub>7-38</sub>, mean Fa<sub>17</sub>: pyroxene, Fa<sub>1-21</sub>. The meteorite is classified as an L3 chondrite (estimated L3.4).

Sample No.: QUE94613 Location: Queen Ale

tion: Queen Alexandra Range

Dimensions (cm):  $2.0 \times 1.5 \times 1.0$ 

Weight (g): 5.1 Meteorite Type: Ureilite

### Macroscopic Description: Kathleen McBride

Forty percent of the exterior of this meteorite is covered with dark brown to black fusion crust. Areas without fusion crust are rusty brown in color. The interior is dull brown to black with some metal grains and some weathered mineral grains visible.

### Thin Section (,2) Description: Brian Mason

The section shows anhedral grains of olivine and a little pyroxene (grains up

to 2.4 mm across) in a black matrix. The matrix contains veinlets of brown limonite, presumably from the weathering of metal and sulfide. Microprobe analyses show olivine of nearly uniform composition, Fa<sub>22.24</sub>, with notably high CaO (0.4%); pyroxene composition is Wo<sub>10</sub>Fs<sub>19</sub>. The meteorite is a ureilite; it appears to be relatively unshocked compared to most ureilites. It is probably paired with QUE93336 and 93341.

Sample No.: QUE94614

Location: Queen Alexandra

Range

Dimensions (cm):  $1.5 \times 1.5 \times 0.5$ 

Weight (g): 2.5

Meteorite Type: Mesosiderite

### Macroscopic Description: Kathleen McBride

Thin, black shiny patches of fusion crust are present on this meteorite's exterior surface. Areas without fusion crust are weathered brown. The interior is brown and fine grained. A few mineral grains are visible and oxidation is present.

### Thin Section (,2) Description: Brian Mason

The section shows plagioclase and pyroxene clasts, up to 1.5 mm across, in an opaque matrix of nickel-iron and troilite (the nickel-iron extensively weathered to brown limonite). Most of the pyroxene is hypersthene, with compositions clustered around Wo<sub>2</sub>Fs<sub>24</sub>, but a few calcium-rich grains were analyzed, up to Wo<sub>34</sub>Fs<sub>32</sub>. Plagioclase compositions are An<sub>91-96</sub>. Trace amounts of an SiO<sub>2</sub> polymorph, probably tridymite, are present. The meteorite is a mesosiderite; it is very similar to QUE86900, with which it is probably paired.

Sample No: QUE94616

Location: Queen Alexandra

Range

Dimensions (cm):  $3.0 \times 2.5 \times 1.5$ 

Weight (g): 13.6 Meteorite Type: Howardite

# Macroscopic Description: Kathleen McBride

The exterior surface of this achondrite is dark gray in color with a small patch of black fusion crust. The exterior has a pebbly texture. The interior reveals a dirty gray matrix with abundant mm-sized white, black and gray inclusions. Minor oxidation is visible.

# Thin Section (,2) Description: Brian Mason

The section shows a microbreccia of pyroxene and plagioclase clasts in a comminuted groundmass of these minerals; the groundmass contains a few small grains of opaques. The pyroxene is orthopyroxene with a lesser amount of pigeonite; orthopyroxene clasts are up to 1.5 mm across, whereas pigeonite clasts are smaller. Microprobe analyses show othropyroxene of essentially uniform composition, Wo<sub>3</sub>Fs<sub>24</sub>, and a wide range of pigeonite compositions, Wo<sub>5-30</sub>, Fs<sub>17-58</sub>. Plagioclase composition is An<sub>74-92</sub>. Two grains of olivine, Fa<sub>59</sub>,  $Fa_{62}$ , were analyzed. The meteorite is a howardite.

Sample No.: QUE94639

Location: Queen Alexandra

Range

Dimensions (cm):  $1.1 \times 1.0 \times 0.2$ 

Weight (g): 0.6

Meteorite Type: Mesosiderite

Macroscopic Description: Carol Schwarz
The exterior surface of this small flat
fragment is dark brown with a few mm-

sized yellow and green mineral grains visible. Some evaporite is also present. The interior is dark brown, mostly metal, with yellow and brown crystals scattered

throughout.

# Thin Section (,2) Description: Brian Mason

This section shows plagioclase and pyroxene clasts, up to 1.2 mm across, in an opaque matrix of nickel-iron and troilite (the nickel-iron extensively weathered to limonite). Most of the pyroxene is hypersthene, with composition near Wo<sub>3</sub>Fs<sub>28</sub>, but one grain of augite, Wo<sub>40</sub>Fs<sub>27</sub>, was analyzed. Plagioclase composition is An<sub>91-96</sub>. One grain of tridymite was analyzed. The meteorite is a mesosiderite, and can be confidently paired with QUE86900.

Sample No.: QUE94688

Location: Queen Alexandra

Range

Dimensions (cm): 2.2 x 1.8 x 1.1

Weight (g): 10.55

Meteorite Type: CV3 Chondrite

### Macroscopic Description: Cecilia E. Satterwhite

Dull black fusion crust covers sixty percent of the exterior of this carbonaceous chondrite. The interior reveals a black fine grained matrix with some weathered inclusions. White mmsized inclusions are abundant on the exterior and interior surfaces.

### Thin Section (,2) Description: Brian Mason

The section shows numerous chondrules (up to 1.8 mm across), irregular aggregates, and mineral grains in a black matrix. A small amount of nickel-iron and troilite is present at the rims and within the chondrules. Microprobe analyses show that most of the olivine in the chondrules is close to Mg<sub>2</sub>SiO<sub>4</sub> in composition, but olivine grains in the matrix are more iron-rich, ranging up to Fa33; pyroxene is rare, a single grain measured was Fs<sub>1</sub>. The matrix appears to consist largely of ironrich olivine, about Fa<sub>45</sub>. The meteorite is classified as a C3 chondrite of the Vigarano subtype; it is very similar to OUE93429, and the possibility of pairing should be considered.

Sample No.: QUE94734

Location: Queen Alexandra

Range

Dimensions (cm): 3.0 x 2.1 x 2.0

Weight (g): 11.17

Meteorite Type: C2 Chondrite

#### <u>Macroscopic Description: Cecilia E.</u> <u>Satterwhite</u>

Fifty percent of the exterior of this carbonaceous chondrite is covered with fractured black fusion crust. Flow lines are present on the fusion crust on some surfaces. Areas without fusion crust are dull and brownish gray in color. The interior reveals a black fine grained matrix with mm-sized gray inclusions.

### Thin Section (,2) Description: Brian Mason

The section shows sparse chondrules, up to 0.9 mm across, some irregular aggregates, and numerous small silicate grains in a dark brown to black matrix. The silicate grains are almost entirely olivine near  $Mg_2SiO_4$  in composition, with a few more iron-rich grains. A little pyroxene near  $MgSiO_3$  in composition is present. The matrix appears to consist largely of iron-rich serpentine. The meteorite is a  $C_2$  chondrite.

Sample No.: GRO95511 Location: Grosvenor

Mountains : 3.6 x 3.0 x 1.5

Dimensions (cm): 3.6 x Weight (g): 64.4

Meteorite Type: Iron - Coarse

Octahedrite

## Macroscopic Description: Roy S. Clarke, Jr.

This oval-shaped button was oriented during atmospheric passage, resulting in a domed anterior surface with a flat posterior. A thin film of reddish brown to black secondary oxides covers the specimen. There is a suggestion of an accumulation of material at the rim where the two surface types join, but fusion crust is not apparent. The internal Widmanstatten pattern stands out in relief on the anterior surface, while the posterior surface is matted terrestrial oxides.

# Polished Section Description: Roy S. Clarke, Jr.

A median slice perpendicular to both the long axis of the oval and to the flat posterior surface was removed, producing butts of 27.5 g and 20.7g, and a 3.1 mm slice of 7.7 g from which a metallographic section was prepared. Fusion crust is absent on the anterior surface, but an accumulation of columnar fusion crust is present at both ends of the posterior surface. They are ~1mm thick near the rim where the surfaces join, and taper to nothing in ~9mm. Heat alteration as indicated by a2 structure affects all but the most interior parts of the section. The plane of section is parallel to the 100 direction of the parent taenite, resulting in a Widmanstatten pattern of kamacite bands in two orthogonal directions with widths of approximately 1.5 mm. The structure, although heat-altered, is regular and otherwise undistorted. It contains several of the more common taeniteplessite structures. Neumann bands are present in the a<sub>2</sub>-free kamacite. Rhabdites are present within kamacite, and grain-boundary schreibersites and taenite-border schreibersites are present. Troilite was not observed but is probably present. Both GRO95511 and GRO95522 are similar in appearance and weathering history. Their Widmanstatten patterns are revealed on different planes, and they have different exposures to preterrestrial distortion and heating. This makes it difficult to suggest if they represent two separate falls or are individuals from a shower. Definitive classification and pairing information awaits trace element analysis.

Sample No.; GRO95522 Location: Grosvenor

Mountains 9.4 x 8.0 x 3.0

Dimensions (cm): 9.4 x 8.0 Weight (g): 962.3

Meteorite Type: Iron - Medium to

Coarse Octahedrite

# Macroscopic Description: Roy S. Clarke, Jr.

This specimen is an irregular-shaped oval with a smooth anterior surface and

a comparatively rough and irregular posterior. The gentle rounding of the anterior surface suggests oriented flight during atmospheric passage. A thin film of reddish brown to black secondary oxides covers the specimen. The internal Widmanstatten pattern stands out in slight relief over much of the anterior surface, while the posterior surface is irregular, and contains depressions apparently due to terrestrial corrosion.

#### Polished Section Description: Roy S. Clarke, Jr.

A median slice perpendicular to both the long axis of the oval and an approximated plane of the posterior surface was removed, producing butts of 698 g and 170 g, and a slice of 49 g. A 2.5 cm<sup>2</sup> piece was taken for a metallographic section. Fusion crust is absent except for a small accumulation of melt crust on the posterior surface at the rim with the anterior surface. Its maximum width is ~0.3 mm near the union of the surfaces. and it tapers to nothing by 5 mm into the interior. The slice is bordered with a heataltered zone of ~3 mm on the anterior surface, and of generally narrower and more variable widths on the posterior surface. The plane of cut revealed three directions of the Widmanstatten pattern unequally displayed. Kamacite band widths are ~ 1.3 mm. The kamacite contains Neumann bands, many of which show mild preterrestrial distortion, as do the kamacite bands themselves. Rhabdites are not prominent, but grainboundary schreibersite and some taenite-border schreibersite are present. Several morphologies of taenite-plessite are present. Close to the anterior surface within an area of fairly high structural distortion is a shattered, euhedral chromite (1.7 x 0.5 mm) surrounded by ~0.4 mm of troilite along the long dimension and ~0.8 at the ends. The exterior of the troilite is bordered over part of its outer edge with schreibersite, and where it is in contact with kamacite, it appears to have been partially melted. Both GRO95511 and GRO95522 are similar in appearance and weathering history. Their Widmanstatten patterns are revealed on different planes, and they have different exposures to preterrestrial distortion and heating. This makes it difficult to suggest if they represent two separate falls or are individuals from a shower. Definitive classification and pairing information awaits trace element analysis.

Sample No.: GRO95533 Location Grosvenor Mountains

Dimensions (cm):  $13.2 \times 7.1 \times 5.8$ 

Weight (g): 613.2 Meteorite Type: Eucrite

(unbrecciated)

### Macroscopic Description: Robbie Ann

Shiny black fusion crust with welldeveloped flow lines covers one half of this pretty eucrite. The other surface is broken and shows minor oxidation. The interior has coarse grained graphic intergrowths of plagioclase and pyroxene. Some brown oxidation is scattered throughout.

#### Thin Section (,5) Description: Brian Mason

The section shows a granular aggregate of pyroxene and plagioclase (grains up to 0.9 mm). The meteorite is unbrecciated, but the individual pyroxene crystals have been granulated. Microprobe analyses show essentially uniform compositions; pyroxene, Wo<sub>26</sub> Fs<sub>60-63</sub>; plagioclase, An<sub>89-90</sub>. meteorite is a eucrite.

Sample No.: GRO95534;

95535

Location: Grosvenor

> Mountains  $3.0 \times 2.7 \times 1.5$ :

Dimensions (cm):

 $3.2 \times 2.5 \times 2.7$ 

Weight (g): 17.9;53.8

Meteorite Type: Howardite

#### Macroscopic Description: Cecilia E. Satterwhite

The exterior surfaces of these achondrite meteorites have smooth, shiny black fusion crust over seventy five percent of their surface. Areas where fusion crust has been plucked away reveal a gray matrix. The interior reveals a gray finegrained texture with abundant white inclusions. A few green and black minerals are present. Minor oxidation is present.

#### Thin Section (GRO95534,3; 95535,5) Description: Brian Mason

The sections are so similar that a single description will suffice; the meteorites are probably paired. They show a groundmass of comminuted pyroxene (orthopyroxene and pigeonite) and plagioclase (grains up to 0.2 mm), with a few larger mineral clasts and rare polymineralic clasts up to 2.5 mm across. Microprobe analyses show a wide range in pyroxene composition: Wo<sub>1-40</sub>, Fs<sub>20-</sub> 60, En<sub>33-79</sub>, but with orthopyroxene clustered around Wo<sub>8</sub>Fs<sub>53</sub> to Wo<sub>40</sub>Fs<sub>27</sub> with fairly uniform En content. Plagioclase composition is An<sub>86-93</sub>. An SiO<sub>2</sub> polymorph, probably tridymite, is present in accessory amounts. The meteorites are howardites.

GRO95544: Sample No.:

95545

Location: Grosvenor

Mountains

Dimensions (cm):  $8.0 \times 7.5 \times 6.0$ ;

 $7.0 \times 5.0 \times 3.0$ 

626.0;142.1 Weight (g):

Meteorite Type: L3 Chondrites

(estimated L3.5)

#### Macroscopic Description: Kathleen McBride

The exterior of these meteorites have thin, patchy fusion crust. In some areas fusion crust has been weathered away. The interior is dark brown with numerous chondrules. Chondrules are white to vellow in color and measure 1 to 4 mm in size. Some appear rusty. Metal grains are present and samples are very coherent and difficult to break.

#### Thin Section (GRO95544,5;95545,4) Description: Brian Mason

The sections are so similar that a single description will suffice; the meteorites are probably paired. The sections show numerous chondrules and chondrule fragments, up to 2.4 mm across, in a black matrix containing small amounts of nickel-iron and troilite. The chondrules are mainly granular and porphyritic olivine and olivine-pyroxene, with a few radiating and crytocrystalline pyroxene. Microprobe analyses show olivine and pyroxene of variable composition: olivine, Fa<sub>1-20</sub>, mean Fa<sub>14</sub>; pyroxene, Fs<sub>1-28</sub>. The meteorites are classified as L3 chondrites (estimated L3.5).

Sample No.:

GRO 95555

Location:

Grosvenor

Mountains

Dimensions (cm)

 $6.0 \times 6.0 \times 5.0$ 

Weight (g):

250.6

Meteorite Type

Diogenite (unique)

Macroscopic Description: Carol Schwarz This specimen is angular in shape and greenish in color. There are several penetrating fractures. The exterior is somewhat polished with no fusion crust. The interior is greenish brown and crystalline with coarse-grained green and dark minerals. (It is coarser than PAT91501 (L7 Chondrite) and ALHA77005 (SNC) and contains no plagioclase.)

### Thin Section (,2) Description: Brian Mason and Tim McCoy

The section shows a polygonal-granular aggregate of anhedral orthopyroxene, the grains ranging from 0.3 to 2.4 mm across. Pyroxene composition is essentially uniform, Wo<sub>2</sub>Fs<sub>24</sub>. Accessory phases include SiO<sub>2</sub>, chromite, an iron sulfide (probably troilite), and weathering products of metal and troilite. The composition is that of a diogenite, but the texture is unique; it shows no sign of the brecciation and shock deformation characteristic of other diogenites.

Aluminum-26 Activity: Dave Lindstrom The sample was radioassayed for Al-26 because it had no fusion crust and might have been a terrestrial rock. Estimated Al-26 activity of 50±10 dpm/hg is similar to that of diogenites and other achondrites.

### Table 4: Natural Thermoluminescence (NTL) Data for Antarctic Meteorites

#### Paul Benoit and Derek Sears

Cosmochemistry Group
Dept. Chemistry and Biochemistry
University of Arkansas
Faytteville, AR 72701 USA

The measurement and data reduction methods were described by Hasan et al. (1987, Proc. 17th LPSC E703-E709); 1989, LPSC XX, 383-384). For meteorites whose TL lies between 5 and 100 krad the natural TL is related primarily to terrestrial history. Samples with NTL <5 krad have TL below that which can reasonably be ascribed to long terrestrial ages. Such meteorites have had their TL lowered by heating within the last million years or so by close solar passage, shock heating, or atmospheric entry, exacerbated, in the case of certain achondrite classes and possibly enstatite chondrites, by "anomalous fading"

| Sample Class |    | [k   | NIL<br>rad a<br>deg. |     | Sample   | Sample Class |        | NTL<br>[krad at<br>250 deg. C] |  |  |
|--------------|----|------|----------------------|-----|----------|--------------|--------|--------------------------------|--|--|
| QUE94204     | E7 | 22   | +-                   | 5   | QUE94207 | L6           | 21 +-  | 9                              |  |  |
|              |    |      |                      |     | QUE94208 | L6           | 13 +   | 5                              |  |  |
| QUE94217     | H5 | 40.7 | +                    | 0.2 | QUE94209 | L6           | 13 +   | 5                              |  |  |
| QUE94237     | H5 | 44.4 | +                    | 0.4 | QUE94210 | L6           | 9 +    | 2                              |  |  |
| QUE94242     | H5 | 1.5  | +-                   | 0.1 | QUE94211 | L6           | 31.0 + | (                              |  |  |
| QUE94252     | H5 | 30.6 | +                    | 0.4 | QUE94212 | L6           | 12 +   | 2                              |  |  |
|              |    |      |                      |     | QUE94213 | L6           | 2.0 +  | C                              |  |  |
| LON94104     | H6 | 44.9 | +                    | 0.1 | QUE94215 | L6           | 11 +   | 1                              |  |  |
| QUE94243     | H6 | 19.1 | +-                   | 0.2 | QUE94216 | L6           | 5 +    | 1                              |  |  |
|              |    |      |                      |     | QUE94227 | L6           | 3 +    | 1                              |  |  |
| QUE94229     | L5 | 7.2  | +                    | 0.1 | QUE94228 | L6           | 2.0 +  | (                              |  |  |
| QUE94240     | L5 | 16.0 | +-                   | 0.1 | QUE94230 | L6           | 12 +   | 2                              |  |  |
| QUE94246     | L5 | 6.4  | +-                   | 0.1 | QUE94231 | L6           | 2.0 +- | (                              |  |  |
| QUE94304     | L5 | 4    | +-                   | 1   | QUE94232 | I.6          | 80.1 + | (                              |  |  |
| QUE94360     | L5 | 10.7 | +                    | 0.1 | QUE94233 | L6           | 4 +    | 1                              |  |  |
| QUE94380     | L5 | 2.9  | +                    | 0.1 | QUE94234 | L6           | 17 +   | 5                              |  |  |
|              |    |      |                      |     | QUE94235 | L6           | 76 +   | 1                              |  |  |
| LON94103     | L6 | 0.5  | +                    | 0.1 | QUE94236 | L6           | 9 +    | 2                              |  |  |
| LON94105     | L6 | 0.8  | +                    | 0.1 | QUE94238 | L6           | 15.7 + | (                              |  |  |
| LON94106     | L6 | 79.4 | +                    | 0.6 | QUE94239 | L6           | 10 +   | 4                              |  |  |
| LON94107     | L6 | 0.6  | +                    | 0.1 | QUE94241 | L6           | 4 +    | 1                              |  |  |
| LON94108     | L6 | 16.7 | +                    | 0.1 | QUE94244 | L6           | 2.3 +  | (                              |  |  |
| LON94109     | L6 | 1.2  | +                    | 0.1 | QUE94251 | L6           | 41.7 + | (                              |  |  |
| QUE94202     | L6 | 15   | +                    | 5   | QUE94255 | L6           | 52.4 + | (                              |  |  |
| QUE94203     | L6 | 11   | +                    | 1   |          |              |        |                                |  |  |
| QUE94205     | L6 | 7.0  | +                    | 0.1 | QUE94247 | $\Pi$        | 4 +    | 1                              |  |  |
| QUE94206     | L6 | 3    | +-                   | 1   |          |              |        |                                |  |  |

The quoted uncertainties are the standard deviations shown by replicate measurements on a single aliquot.

**COMMENTS:** The following comments are based on natural TL data, TL sensitivity, the shape of the induced glow curve, classifications, and JSC and Arkansas group sample descriptions.

QUE94202, QUE94203, QUE94205, QUE94206, QUE94207, QUE94208, QUE94209, QUE94210, QUE94212, QUE94213, QUE94215, QUE94216, QUE94227, QUE94228, QUE94230, QUE94231, QUE94233, QUE94234, QUE94236, QUE94239, and QUE94241 (all L6) may be heavily shocked.

1. Pairings (Confirmations of pairings):

L6: QUE94203, QUE94205, QUE9R206, QUE94207, QUE94208, QUE94209, QUE94210, QUE94212, QUE94213, QUE94215, QUE94216, QUE94227, QUE94228, QUE94231, QUE94233, QUE94234, QUE94236, QUE94239, and QUE94241 with QUE94202 (AMN 19:1).

2. TL data do not confirm pairings proposed in the Newsletter:

L6: QUE94211, QUE94235, and QUE94238 with the QUE94202 group (AMN 19:1).

- 3. Additional pairings suggested by TL data:
  - H5: QUE94237 and QUE94217.
  - L5: QUE94304 and QUE94380 with the QUE90205 group (AMN 15:2).
  - L5: QUE94229 and QUE94246 with the QUE90207 group (AMN 15:2).
  - L6: LON94105 and LON94107 with LON94103.
  - L6: QUE94212 and QUE94230 with the QUE94202 group.
  - L6: QUE94235 with QUE94232.
  - L6: QUE94202 group may be paired with QUE93015 (AMN 19:1).

# Meteorites On-Line-

### World Wide Web Sites of Interest

#### **Antarctic Meteorites**

http://www-curator.jsc.nasa.gov/curator/antmet

#### **Meteorites from Mars**

http://www-curator.jsc.nasa.gov/curator/antmet/marsmet/text.htm



### **Planetary Materials**

http://www-curator.jsc.nasa.gov/curator/curator.htm

The curatorial databases may be accessed as follows:

| Via INTERNET | <ol> <li>Type TELNET 139.169.126.35 or<br/>TELNET CURATE JSC.NASA.GOV.</li> <li>Type PMPUBLIC at the <u>USERNAME</u>: prompt.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Via WWW      | <ol> <li>Using a Web browser, such as Mosaic, open URL<br/>http://www-sn.jsc.nasa.gov/curator/curator.htm.</li> <li>Activate the Curatorial Databases link.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                 |
| Via modem    | The modem may be between 1200 and 19200 baud; no parity; 8 data bits; and 1 stop bit. If you are calling long distance, the area code is 713.  1) Dial 483-2500 for 1200-9600 bps, V.32bis/V.42bis, or 483-9498 for 1200-19200 bps, V.32bis/V.42bis.  2) Once the connection is made, press <cr>. Type INS in response to the Enter Number: prompt.  3) Press <cr> twice quickly until the XYPLEX#&gt; prompt displays.  4) Type C CURATE ISC.NASA.GOV at the XYPLEX#&gt; prompt.  5) Type PMPUBLIC at the USERNAME: prompt.</cr></cr> |

For problems or additional information, you may contact: Claire Dardano, Lockheed Martin Engineering & Sciences Company, (713) 483-5329, dardano@snmail.jsc.nasa.gov.