

Volume 41, Number 2 September 2018

Curator's Comments

Kevin Righter, NASA-JSC

This newsletter reports samples from the 2014, 2015, 2016, and 2017 ANSMET seasons, including the first from the most recent 2017-2018 season to the Grosvenor Mountains and Amundsen Glacier areas.

Reported here are numerous (14) HED meteorites (including several pairing groups), 3 irons, 10 carbonaceous chondrites, a low FeO ordinary chondrite, and two H3.5 chondrites. The eucrites have been assigned pairing groups as best as possible given the macroscopic, microscopic, and mineral compositional data, but should be treated with caution. Any detailed petrologic work on these pairing groups should try to verify or confirm the pairings. New slices of these meteorites might reveal previously unrecognized lithologies or textures, which would than require a revision of the pairing relations.

In addition to the newly classified samples, there are some reclassifications: a) an unusual achondrite DOM 14289 reclassified from a lodranite to a QUE 93148-like ungrouped achondrite with possible affinities with HEDs, and b) over 300 equilibrated ordinary chondrites from the Dominion Range for which our magnetic susceptibility data indicates reclassification. We also report a pairing update for LAP 031047 and LAP 03788.

Updated classification for DOM 14289

Original classification notes:

This meteorite was examined in a thin section (,2) which contained only silicate material and a thick section (,4) dominated by metal with minor silicates and chromite. As a whole, the meteorite is metal dominated. Silicates are coarse grained, with individual grains reaching up to 3 mm. Pyroxenes exhibit approximately 2 micron scale striations of high birefringence. Chromites reach up to 1.4 mm. The metal exhibits partial swathing kamacite adjacent to silicates and chromite with plessite dominating most of the section. Metal and sulfide inclusions occur within the chromites. Compositionally, olivines are Fa₁₂₋₁₃ and pyroxenes are Fs₅Wo₄₂₋₄₆ and Fs₁₂Wo₁. The compositions and texture suggest grouping with the lodranites. However, the metal rich nature of the sample is reminiscent of QUE 93148, which was also originally classified as a lodranite, but may be related to the HEDs or pyroxene pallasites.

Since the time of the original classification, we have obtained oxygen isotope data indicating that this sample is not a lodranite, as originally sug-

Sample Request Deadline September 20, 2018

A periodical issued by the Meteorite Working Group to inform scientists of the basic characteristics of specimens recovered in the Antarctic.

Edited by Cecilia Satterwhite and Kevin Righter, NASA Johnson Space Center, Houston, Texas 77058

Inside this Issue

Curator's Comments	1
New Meteorites	5
Location Abbreviations	
and Map	5
Table 1: Newly Classified	
Antarctic Meteorites	6
Table 2: Newly Classified	
Meteorites by Type	12
Notes to Tables 1 & 2	13
Table 3: Pairing	14
Petrographic Descriptions	15
Table of Reclassifications and	
Magnetic Susceptibility	22
Sample Request Guidelines	31
Antarctic Meteorite Laboratory	
Contacts	31
Meteorites On-Line	32

MWG Meets October 4-5, 2018

gested, but is instead related to QUE 93148. This was also recognized in the original classification notes, and classification as related to QUE 93148 is now favored with the new oxygen data. In addition, the olivine Fe/Mn and Fe/Mg ratios of ~40 and ~ 0.14, respectively, are also nearly identical to those of olivine in QUE 93148 (Goodrich and Righter, 2000). We thank K. Ziegler for carrying out the oxygen isotope measurements at UNM.

Sample	mg	date	δ ¹⁷ O'	δ ¹⁸ O'	Δ ¹⁷ O'	N
DOM 14289.6 clear	1.5	14-May-18	1.682	3.590	-0.214	1
DOM 14289.6 clear	1.8	14-May-18	1.728	3.719	-0.236	1
DOM 14289.6 dark	2.7	14-May-18	1.984	4.184	-0.225	1

Recommended pairing of LAP 031047 and LAP 03788

As part of an independent study of ordinary chondrites, PI Jon Friedrich carried out a micro CT scan of LAP 03788 and found that it had a nearly identical texture to another LAP chondrite from Wittmann et al. (2011) LAP 031047. Because this texture is unique and these samples were recovered in the same field season we have decided to pair them. Below are the two respective images of slices from the CT scanning (image of LAP 03788 courtesy of J. Friedrich, Fordham Univ., and image of LAP 031047 from Wittmann et al., 2011).

Wittmann, A., Kring, D. A., Friedrich, J. M., Troiano, J., Macke, R. J., Britt, D. T., Swindle, T. D., Weirich, J. R., Rumble III, D., Lasue, J., 2011,H/L chondrite LaPaz Icefield 031047 - A feather of Icarus?, Geochimica et Cosmochimica Acta, 75, 6140-6159, ISSN 0016-7037, http://dx.doi.org/10.1016/ j.gca.2011.07.037.

Reclassification and magnetic susceptibility of Dominion Range samples

Magnetic susceptibility of Dominion Range (DOM) 2008 season samples has been measured and presented below, along with suggested reclassification of equilibrated ordinary chondrites, based on the approach presented in AMN 40, no. 1 (Feb. 2017). There we reported that in a study of ~60 samples from Larkman Nunatak and Dominion Range, all H chondrites had log χ values > 4.9, and no LL chondrites had log χ values > 4.4. We have reclassified ~ 325 DOM 08 samples using these ranges as well. (See Table at the end of the newsletter.)

Field plan for the 2018-19 ANSMET Field Season

Ralph Harvey, Case Western Reserve University Jim Karner, University of Utah

We're sure most readers of this newsletter can appreciate how much planning is involved to get a typical ANSMET season underway. In many cases it can be several years between the time an icefield is targeted in a support proposal to the day that ANSMET boots first set foot on the ice. Usually the six months before a season is when the pace really picks up. Details of the needs of the field party matched to the logistical capabilities of the US Antarctic program, with several rounds of feedback gradually turning plans into achievable reality. There are other cases where logistical issues (ranging from broken airplanes to a broken US Congress) can force planning to start all over from square one with no more than a day or two's notice. Somehow, (due to either luck, or deep forward thinking, or both) ANSMET has managed to field a team in every austral summer except one since 1976.

That's worth mentioning because for reasons too complicated to be discussed here, detailed planning for the upcoming 2018-19 season is not yet complete. Obviously we'd like everything to be set in stone, but we're no strangers to uncertainty. So we'll just keep pushing things as far forward as we can. Currently we plan a return to the icefields surrounding the Davis Nunataks and Mt. Ward, not surprisingly known as "Davis-Ward". Meteorites (designated DOM for the nearby Dominion Range) were first found at this site during a reconnaissance traverse through the upper Beardmore region by Bill Cassidy in 1985. In the 2003-04 season, a recon team visited the area for five days and recovered 89 meteorites, which pointed to the need for a systematic

Report from the Smithsonian

Cari Corrigan, Geologist (Dept. of Mineral Sci.)

Things are rolling along as usual at the Smithsonian. The Hyperprobe is still running beautifully and the SEM is back online, allowing us to use both for classification of Antarctic meteorites. We have secured the funding for two, one-year positions in the Division of Meteorites, and are looking forward to having those folks on board sometime later this fall. We have ordered new cabinets for our meteorite vault in the Museum on the Mall, which will expand our storage capability, provide more workspace and a new display case. Finally, we are very sorry to see our current post doc, Nicole Lunning, move on to the next steps in her career this fall. Nicole has been an amazing asset to our department and she will be missed.

search of the area. Systematic searches in the 2008-09, 2010-11, and 2014-15 seasons yielded another 2000 meteorites. The Davis-Ward area is essentially a broad tongue of ice between two isolated mountains, which are joined by a recessional moraine (Figure 1). Meteorites have been recovered from all parts of the bare ice, but most have been found in either the 100-meterwide trough that runs along the foot of Mt. Ward, or the moraines that outline the "mitten" (see Fig. 1). The bare ice is often heavy with terrestrial rock, so systematic sweeping can be slow-going. This year our goal is to complete search and recovery work at Davis-Ward; systematically search bare ice where it is warranted and methodically work through what remains of the unsearched moraines surrounding the icefields. If we finish early (and that's a big if), we will make a snowmobile traverse about 20 nm north to the Main Icefield at the foot of the Dominion Range. The team would spend the rest of the season on search and recovery efforts from the icefields there.

Figure 1. Composite satellite image of the Davis-Ward icefields, with Mt. Ward to the right and Davis Nunataks to the left. The image is oriented with north toward the top. The remaining unsearched areas are about "half the fingers" and "part of the thumb" of the mitten-shaped central icefield.

New Meteorites-

2014-2017 Collection

Pages 6-21 contain preliminary descriptions and classifications of meteorites that were completed since publication of issue 41(1), March, 2018. Specimens of special petrologic type (carbonaceous chondrite, unequilibrated ordinary chondrite, achondrite, etc.) are represented by separate descriptions unless they are paired with previously described meteorites. However, some specimens of non-special petrologic type are listed only as single line entries in Table 1. For convenience, new specimens of special petrological type are also recast in Table 2.

Macroscopic descriptions of stony meteorites were performed at NASA/JSC. These descriptions summarize handspecimen features observed during initial examination. Classification is based on microscopic petrography and reconnaissance-level electron microprobe analyses using polished sections prepared from a small chip of each meteorite. For each stony meteorite the sample number assigned to the preliminary examination section is included. In some cases, however, a single microscopic description was based on thin sections of several specimens believed to be members of a single fall.

Meteorite descriptions contained in this issue were contributed by the following individuals:

Rachel Funk, Roger Harrington, Kellye Pando, Cecilia Satterwhite and Kevin Righter Antarctic Meteorite Laborabory NASA Johnson Space Center Houston, Texas

Cari Corrigan, Julie Hoskin, Nicole Lunning, and Tim McCoy Department of Mineral Sciences U.S. National Museum of Natural History - Smithsonian Institution Washington, D.C.

Antarctic Meteorite Locations

- ALH _ Allan Hills AMU _ Amundsen Glacier BEC **Beckett Nunatak** BOW — Bowden Neve BTN _ **Bates Nunataks** BUC — **Buckley Island** CMS _ **Cumulus Hills** CRA _ Mt.Cranfield Ice Field CRE _ Mt. Crean DAV _ **David Glacier** DEW — Mt. DeWitt DNG — D'Angelo Bluff DOM — **Dominion Range** DRP _ **Derrick Peak** EET _ **Elephant Moraine** FIN Finger Ridge Gardner Ridge GDR — GEO _ **Geologists Range** GRA _ **Graves Nunataks** GRO _ **Grosvenor Mountains**
- GRU Grosvenor Mc
- HOW Mt. Howe
- ILD Inland Forts KLE — Klein Ice Field
- LAP LaPaz Ice Field
- LAF LaFaz ice Fielu
- LAR Larkman Nunatak
- LEW Lewis Cliff
- LON Lonewolf Nunataks
- MAC MacAlpine Hills
- MBR Mount Baldr

MIL _ Miller Range ODE _ **Odell Glacier** OTT **Outpost Nunatak** — PAT _ Patuxent Range PCA _ Pecora Escarpment PGP _ Purgatory Peak Mt. Pratt PRA _ PRE _ Mt. Prestrud QUE

MacKay Glacier

Meteorite Hills

MCY

MET

RBT

RKP

SAN

SCO

STE

SZA

TEN

WIS

TIL TYR _

- Queen Alexandra
 Range
- Roberts Massif
- Reckling Peak
- Sandford Cliffs
- Scott Glacier
- Stewart Hills
- Szabo Bluff
 - Tentacle Ridge
 - Thiel Mountains
 - Taylor Glacier
- Wisconsin Range
- WSG Mt. Wisting

Table 1Newly Classified Antarctic Meteorites

Sample

Number	<u>Weight (g)</u>	Classification	Weathering	Fracturing	<u>%Fa</u>	<u>%Fs</u>
DOM 14001	8205.000	H5 CHONDRITE	В	A	18	17
DOM 14080	10.340	CHONDRITE UNGROUF	PED C	Α	15	5-14
DOM 14188	35.450	H4 CHONDRITE	Ce	Α	18	7-29
DOM 14192	9.445	L5 CHONDRITE	A/B	А	25	20
DOM 14210	48.399	L6 CHONDRITE	A/B	А	25	21
DOM 14211	24.675	L5 CHONDRITE	В	А	25	21
DOM 14212	23,509	L6 CHONDRITE	В	А	25	21
DOM 14213	63.269	H6 CHONDRITE	B/C	A	19	17
DOM 14214	29.675	L6 CHONDRITE	A/B	A	24	22
DOM 14215	46 992	15 CHONDRITE	B/C	A	24	21
DOM 14216	27 106	L6 CHONDRITE	B	A	24	21
DOM 14217	27.096		B	Δ	25	20
DOM 14217	41 805		B/C	Δ	25	20
DOM 14210	288 530		B/C	Δ	25	21
DOM 14230	200.000		Δ/B	Δ	20	21
DOM 14231	244.020		AD C	~	2 4 10	17
DOM 14232	164 100			~	19	21
DOM 14233	104.100		A	A	20 10	21
DOM 14234	193.07			D	10	21
DOM 14235	63.720		В	A	24	21
DOM 14250	49.702		B	AVB	19	18
DOM 14251	30.263	L6 CHONDRITE	B/C	A	25	21
DOM 14252	26.192	H5 CHONDRITE	B/C	A	20	17
DOM 14253	33.229	L6 CHONDRITE	A/B	A	25	21
DOM 14254	32.339	H5 CHONDRITE	В	A	19	
DOM 14255	17.966	H5 CHONDRITE	B/C	A	18	18
DOM 14256	21.926	H6 CHONDRITE	B/C	A	20	19
DOM 14257	14.357	L6 CHONDRITE	В	Α	25	21
DOM 14258	23.193	H6 CHONDRITE	B/C	A/B	20	17
DOM 14259	31.060	L6 CHONDRITE	В	А	25	21
DOM 14260	9.975	L6 CHONDRITE	В	А	24	21
DOM 14261	11.599	H5 CHONDRITE	A/B	А	19	18
DOM 14262	7.146	L6 CHONDRITE	В	Α	24	21
DOM 14263	11.922	H5 CHONDRITE	B/C	A/B	18	16
DOM 14264	13.742	L6 CHONDRITE	В	А	25	21
DOM 14265	15.701	H6 CHONDRITE	B/C	А	19	17
DOM 14266	19.055	H5 CHONDRITE	B/C	А	19	18
DOM 14267	21,307	L6 CHONDRITE	В	А	25	21
DOM 14268	19 439	H5 CHONDRITE	B/C	A	19	17
DOM 14269	22 804	I 6 CHONDRITE	B/C	A/B	25	21
DOM 14290	27 251	L6 CHONDRITE	A/B	A	24	21
DOM 14291	31 977		B/C	Δ	25	22
DOM 14292	14 307		B/C	Δ	25	22
DOM 14292	18 076		D/C	~ ~	25	22
DOM 14293	12 729			~ ^	2J 12	۲ کے 17
DOM 14294	17 706			~ ~	10 25	17
DOM 14290	11.120			~	20	01
	14.010			A	20	Z I
DOM 14297	11.052		AVR	A	24	21

<u>Sample</u>						
<u>Number</u>	<u>Weight (g)</u>	Classification	<u>Weathering</u>	Fracturing	<u>%Fa</u>	<u>%Fs</u>
DOM 14298	25.743	L6 CHONDRITE	A/B	А	25	21
DOM 14299	17.966	L6 CHONDRITE	A/B	А		20
DOM 14310	25.278	L6 CHONDRITE	A/B	А	25	21
DOM 14311	23.055	L6 CHONDRITE	В	А	25	21
DOM 14312	20.873	L6 CHONDRITE	В	А	25	
DOM 14313	20.598	L6 CHONDRITE	A/B	А	25	20
DOM 14314	17.513	L6 CHONDRITE	B/C	A/B	25	21
DOM 14315	13,150	L5 CHONDRITE	B/C	A	24	22
DOM 14316	11 129	L6 CHONDRITE	A/B	A	24	21
DOM 14317	16 705	L6 CHONDRITE	B	A	24	21
DOM 14318	14 912	L6 CHONDRITE	B/C	A	24	21
DOM 14319	12 388		Be	Δ	25	21
DOM 14340	33 113		Δ/B	Δ	25	20
DOM 14341	30 217		R/C	Δ	25	20
DOM 14342	42 705		B	~ ~	20	21
DOM 14342	42.705			~	20	24
DOM 14343	40.451			A	20	22
DOM 14344	00.909		D/C	A	24	21
DOM 14345	44.888		B/C	A	24	21
DOM 14346	23.062	L6 CHONDRITE	B/C	A	25	21
DOM 14347	33.898	L6 CHONDRITE	B/C	A	25	21
DOM 14348	40.590	L6 CHONDRITE	A/Be	A	24	20
DOM 14349	26.291	L6 CHONDRITE	В	A	24	21
DOM 14350	35.852	L6 CHONDRITE	B/C	A	25	21
DOM 14351	26.878	L5 CHONDRITE	В	A	24	21
DOM 14352	15.329	L6 CHONDRITE	B/C	A/B	24	20
DOM 14353	19.662	L6 CHONDRITE	A/B	A	24	21
DOM 14354	28.381	L6 CHONDRITE	A/B	A	25	21
DOM 14355	6.607	L6 CHONDRITE	B/C	A/B	25	21
DOM 14356	11.982	H6 CHONDRITE	B/C	A	19	17
DOM 14357	13.987	H6 CHONDRITE	B/C	A	19	17
DOM 14358	16.209	L6 CHONDRITE	B/C	A	24	21
DOM 14368	23.887	L6 CHONDRITE	B/C	А	23	19
DOM 14375	14.466	L5 CHONDRITE	B/C	А	25	21
DOM 14400	65.518	L6 CHONDRITE	A/B	А	25	21
DOM 14401	64.509	L5 CHONDRITE	B/C	А	25	21
DOM 14402	57.619	L6 CHONDRITE	B/C	А	24	22
DOM 14403	41.377	L6 CHONDRITE	A/B	А	25	21
DOM 14404	36.534	L5 CHONDRITE	B/C	А	26	22
DOM 14405	66.002	H6 CHONDRITE	B/C	А	19	17
DOM 14406	71.720	L6 CHONDRITE	A/B	А	25	
DOM 14407	84.250	H5 CHONDRITE	B/C	A/B	19	17
DOM 14408	63 981	H5 CHONDRITE	A/B	B	19	17
DOM 14409	73 130	1.5 CHONDRITE	B	A	24	21
DOM 14410	53 889	H5 CHONDRITE	B	Δ	20	18
DOM 14411	53 791	I 6 CHONDRITE	Δ/R	Δ	25	21
DOM 12/12	82 580		R	Δ	10	17
DOM 14412	02.000		BIC	Δ	25	21
	100 69			~ ^	20 22	∠ I 01
DOM 14414	100.00			~ ^	20 25	∠ I 01
DOM 14413	120.001		D/C	~	20	∠ I

<u>Sample</u> Number	Weight (g)	Classification	Weathering	Fracturing	%Ea	%Fe
	<u>404.000</u>				<u>/01 a</u>	<u>701 3</u>
DOM 14410	104.200		B/C	B	10	17
DOM 14417	90.903		D/C	AVD	24 10	2 I 10
DOM 14410	134.000			A	19	10
DOM 14419	01.010		AVD D/C	A	24	21
DOM 14420	20.095		B/C	A	20	20
DOM 14421	20.346		B/C	A	19	17
DOM 14422	24.271		B/C	AVB	19	10
DOM 14423	24.475		B	A/B	24	22
DOM 14424	32.146		AVB	AVB	24	21
DOM 14425	49.982		B/C	A	25	21
DOM 14426	35.112		AVB	A	25	22
DOM 14427	22.324	L5 CHONDRITE	B/C	A	25	22
DOM 14428	27.068		AVB	A	25	21
DOM 14429	40.145	H3.5 CHONDRITE	B	A	5-44	8-25
DOM 14430	18.950		B/C	A	19	18
DOM 14431	33.987	L6 CHONDRITE	A/B	A	24	22
DOM 14432	31.067	L6 CHONDRITE	B/C	A	25	22
DOM 14433	18.928	H5 CHONDRITE	B/C	A/B	19	17
DOM 14434	30.193	L5 CHONDRITE	B/C	A	25	21
DOM 14435	27.631	H4 CHONDRITE	B/C	A	19	17
DOM 14436	27.561	L5 CHONDRITE	B/C	A	25	
DOM 14437	32.904	L5 CHONDRITE	A/B	A	25	20
DOM 14438	41.315	H6 CHONDRITE	B/C	A	19	17
DOM 14439	100.154	H5 CHONDRITE	B/C	A	19	17
DOM 14445	5.091	LL6 CHONDRITE	В	A/B	28	
DOM 14470	35.160	L6 CHONDRITE	В	A	24	21
DOM 14471	44.840	L4 CHONDRITE	B/C	A/B	25	21
DOM 14472	26.110	L6 CHONDRITE	B/C	A	25	21
DOM 14473	43.600	H5 CHONDRITE	B/C	A	19	17
DOM 14474	72.510	L6 CHONDRITE	A/Be	A	24	20
DOM 14475	60.430	L6 CHONDRITE	A/B	A	24	21
DOM 14476	60.160	L6 CHONDRITE	В	В	25	
DOM 14477	43.110	L6 CHONDRITE	B/C	A	24	21
DOM 14478	58.710	L6 CHONDRITE	B/C	A	25	21
DOM 14479	31.430	H5 CHONDRITE	B/C	A/B	19	17
DOM 14490	16.290	L6 CHONDRITE	В	A/B	25	21
DOM 14491	18.830	H3.5 CHONDRITE	A	A	9-41	2-22
DOM 14492	30.710	L6 CHONDRITE	B/C	A	25	22
DOM 14493	11.190	L6 CHONDRITE	B/C	A	25	21
DOM 14494	13.280	L6 CHONDRITE	B/C	A	24	21
DOM 14495	13.270	L6 CHONDRITE	B/C	A	25	21
DOM 14496	14.860	L6 CHONDRITE	B/C	A	25	21
DOM 14497	22.500	H5 CHONDRITE	С	A	19	18
DOM 14498	21.650	L5 CHONDRITE	B/C	А	22	
DOM 14499	10.830	L6 CHONDRITE	Ce	А	25	21
DOM 14500	21.980	L6 CHONDRITE	A/B	A/B	25	22
DOM 14501	18.055	L6 CHONDRITE	В	А	24	21
DOM 14502	15.128	L6 CHONDRITE	В	А	25	
DOM 14503	18.510	L6 CHONDRITE	В	А	25	22

<u>Sample</u>						
<u>Number</u>	<u>Weight (g)</u>	Classification	<u>Weathering</u>	Fracturing	<u>%Fa</u>	<u>%Fs</u>
DOM 14504	16.092	L6 CHONDRITE	В	А	25	
DOM 14505	17.842	L6 CHONDRITE	B/C	А	24	
DOM 14506	26.455	L6 CHONDRITE	A/B	А	25	22
DOM 14507	19.293	L6 CHONDRITE	B/C	A/B	25	
DOM 14508	12.874	L6 CHONDRITE	В	A/B	25	21
DOM 14509	33.466	L5 CHONDRITE	A/B	А	24	21
DOM 14527	14.110	L5 CHONDRITE	Be	В	25	
DOM 14560	13.268	L6 CHONDRITE	B/C	А	25	21
DOM 14561	7.176	L6 CHONDRITE	B/C	А	25	22
DOM 14562	17.133	L6 CHONDRITE	A/B	А	25	21
MIL 15082	35.858	H5 CHONDRITE	B/C	А	19	17
MIL 15083	27.598	H6 CHONDRITE	B/C	А	18	16
MIL 15084	24.850	L6 CHONDRITE	A/B	А	25	22
MIL 15085	42.171	L5 CHONDRITE	В	А	25	21
MIL 15087	19.597	L6 CHONDRITE	A/B	A/B	25	22
MIL 15088	30.538	H6 CHONDRITE	B/C	А	19	17
MIL 15089	30.965	H6 CHONDRITE	С	A/B	20	18
MIL 15090	15.084	L6 CHONDRITE	B/C	А	22	18
MIL 15091	11.888	H5 CHONDRITE	B/C	А	19	17
MIL 15092	18.727	L5 CHONDRITE	B/Ce	А	22	20
MIL 15093	21.073	H6 CHONDRITE	B/C	A/B	19	17
MIL 15094	10.636	CM2 CHONDRITE	Be	A/B	1-46	1
MIL 15095	12.489	H6 CHONDRITE	B/C	А	19	17
MIL 15096	16.58	H5 CHONDRITE	B/C	A	19	17
MIL 15097	16.096	H6 CHONDRITE	B/C	A/B	19	18
MIL 15098	4.436	H6 CHONDRITE	B/C	A	20	17
MIL 15250	11.156	H6 CHONDRITE	B/C	A	19	17
MIL 15251	8.337	LL6 CHONDRITE	B	A/B	29	23
MII 15252	17 858	H6 CHONDRITE	B/C	A	18	16
MII 15253	11 990	H6 CHONDRITE	B/C	A	20	17
MII 15254	21 468	CV3CHONDRITE	B	A	1-44	1
MIL 15255	7 492	CV3CHONDRITE	B	A	1-52	1-15
MIL 15256	11 180	H6 CHONDRITE	B/C	A	20	16
MII 15257	11 258	CV3CHONDRITE	B	A	1-14	1-5
MII 15258	36 636	H6 CHONDRITE	B/C	A/B	20	18
MII 15299	15 297	15 CHONDRITE	A	C	25	21
MIL 15357	48 785	H6 CHONDRITE	B/C	B	19	17
MIL 15370	28 343	H5 CHONDRITE	B/Ce	A	19	17
MII 15371	18 278	15 CHONDRITE	Be	A/B	25	21
MIL 15372	12 891	H6 CHONDRITE	Ce	A/B	21	18
MIL 15373	13 786	H5 CHONDRITE	B/Ce	A	21	17
MIL 15374	29.383	L6 CHONDRITE	B	A/B	24	20
MIL 15375	20.581	L5 CHONDRITE	A/Be	A/B	25	21
MII 15376	36 611		Re	Δ	20	<u> </u>
MII 15377	23 306	H5 CHONDRITE	R/Ce	Δ	19	17
MII 15378	16 525	H5 CHONDRITE	B/Ce	A/R	19	17
MII 15379	29 798	H5 CHONDRITE	B/C	A	19	17
MIL 15383	557.700	H5 CHONDRITE	B/C	В	20	18

<u>Sample</u>					0/ F	o/ E
Number	<u>weight (g)</u>	Classification	weathering	Fracturing	<u>%⊦a</u>	<u>%FS</u>
MIL 15390	36.150	H5 CHONDRITE	С	A/B	20	17
MIL 15391	27.790	H6 CHONDRITE	CE	A	19	18
MIL 15392	22.480	H6 CHONDRITE	CE	A	19	
MIL 15393	20.540	L5 CHONDRITE	B/C	B/C	24	21
MIL 15394	32.900	H6 CHONDRITE	CE	A	19	17
MIL 15395	21.450	H6 CHONDRITE	С	В	19	17
MIL 15396	14.630	H6 CHONDRITE	CE	A	19	17
MIL 15397	17.900	H6 CHONDRITE	С	A	18	
MIL 15398	16.500	H5 CHONDRITE	B/CE	В	18	16
MIL 15399	34.510	H6 CHONDRITE	CE	A/B	19	17
MIL 15416	1.250	L6 CHONDRITE	A/B	С	25	22
MIL 15417	1.200	H6 CHONDRITE	С	В	18	17
MIL 15418	0.850	L5 CHONDRITE	A/B	A/B	24	19
MIL 15430	0.170	H6 CHONDRITE	С	А	19	17
MIL 15431	0.260	L5 CHONDRITE	B/C	В	25	20
MIL 15432	0.530	H6 CHONDRITE	С	С	19	17
MIL 15433	1.040	LL4 CHONDRITE	A/B	A/B	29	23
MIL 15436	1.010	L6 CHONDRITE	Be	A	25	22
MIL 15477	0.760	H6 CHONDRITE	В	A/B	19	17
MIL 15478	0.540	H6 CHONDRITE	B/C	A	18	16
MIL 15531	1.370	H5 CHONDRITE	С	С	19	17
MIL 15532	1.450	H6 CHONDRITE	Ce	A/B	19	18
MIL 15533	1.310	H5 CHONDRITE	В	В	19	17
MIL 15534	0.390	H6 CHONDRITE	В	A/B	21	18
MIL 15535	1.400	L5 CHONDRITE	В	С	25	
MIL 15536	1.410	H5 CHONDRITE	В	A/B	20	17
MIL 15538	0.790	H5 CHONDRITE	Ce	A/B	20	18
MIL 15567	1.070	L6 CHONDRITE	С	A	26	22
EET 16002	259.400	L5 CHONDRITE	B/C	A/B	26	21
EET 16016	67.903	H5 CHONDRITE	B/C	A/B	19	17
EET 16020	1707.200	L6 CHONDRITE	Α	A/B	24	21
EET 16021	183.169	L6 CHONDRITE	A/B	В	25	21
EET 16040	218.380	LL5 CHONDRITE	A/B	A	28	24
EET 16043	47.040	L6 CHONDRITE	A/B	A	25	
AMU 17290	14.393	CM2 CHONDRITE	Be	B/C	1-33	9
GRO 17001	28.215	H5 CHONDRITE	B/C	A	19	17
GRO 17004	52.933	CM2 CHONDRITE	Be	B/C	0-39	
GRO 17006	40.372	EUCRITE (POLYMICT)	A/B	В		28-64
GRO 17039	8.269	EUCRITE (POLYMICT)	A/B	A		27-62
GRO 17048	23.531	EUCRITE (POLYMICT)	A/B	A/B		29-66
GRO 17049	61.353	EUCRITE (POLYMICT)	A/B	В		27-65
GRO 17051	2805.950	IRON-IAB		A		
GRO 17059	102.442	CK5 CHONDRITE	В	A/B	31	23
GRO 17063	388.300	CR2 CHONDRITE	В	А	9-38	12-17
GRO 17064	226.400	CR2 CHONDRITE	В	А	1-36	9-19
GRO 17070	64.631	EUCRITE (UNBRECCIATI	ED) A	A/B		29-60
GRO 17098	38.752	EUCRITE (UNBRECCIATI	ED) A/B	A/B		24-60

<u>Sample</u>						
Number	<u>Weight (g)</u>	<u>Classification</u>	<u>Neathering</u>	Fracturing	<u>%Fa</u>	<u>%Fs</u>
GRO 17099	26.701	EUCRITE (POLYMICT)	А	A/B		20-52
GRO 17102	4959.500	IRON-IAB				
GRO 17168	133.858	EUCRITE (POLYMICT)	A/B	A/B		28-64
GRO 17169	78.959	CK4 CHONDRITE	A/B	A/B		11-15
GRO 17175	94.864	DIOGENITE	А	В		12-30
GRO 17176	131.112	EUCRITE (POLYMICT)	A/B	А		27-63
GRO 17189	25.324	EUCRITE (POLYMICT)	А	В		26-60
GRO 17195	75.770	IRON-UNGROUPED		А		
GRO 17200	46.365	EUCRITE (UNBRECCIATI	ED) A/B	В		25-61
GRO 17210	184.233	EUCRITE (UNBRECCIATI	ED) A/B	A/B		25-60
GRO 17211	47.300	EUCRITE (POLYMICT)	A/B	В		28-65

Table 2Newly Classified Meteorites Listed by Type

Achondrites

<u>Sample</u> <u>Number</u>	<u>Weight(g)</u>	Classification	<u>Weathering</u>	Fracturing	<u>%Fa</u>	<u>%Fs</u>
GRO 17006	40.372	EUCRITE (POLYMICT)	A/B	В		28-64
GRO 17039	8.269	EUCRITE (POLYMICT)	A/B	A		27-62
GRO 17048	23.531	EUCRITE (POLYMICT)	A/B	A/B		29-66
GRO 17049	61.353	EUCRITE (POLYMICT)	A/B	В		27-65
GRO 17099	26.701	EUCRITE (POLYMICT)	А	A/B		20-52
GRO 17168	133.858	EUCRITE (POLYMICT)	A/B	A/B		28-64
GRO 17176	131.112	EUCRITE (POLYMICT)	A/B	А		27-63
GRO 17189	25.324	EUCRITE (POLYMICT)	А	В		26-60
GRO 17211	47.300	EUCRITE (POLYMICT)	A/B	В		28-65
GRO 17070	64.631	EUCRITE (UNBRECCIATED	D) A	A/B		29-60
GRO 17098	38.752	EUCRITE (UNBRECCIATED)) A/B	A/B		24-60
GRO 17200	46.365	EUCRITE (UNBRECCIATED)) A/B	В		25-61
GRO 17210	184.233	EUCRITE UNBRECCIATED) A/B	A/B		25-60
				_		10.05
GRO 17175	94.864	DIOGENITE	A	В		12-30

Carbonaceous Chondrites

Commis						
<u>Sample</u> Number	<u>Weight(g)</u>	Classification	Weathering	Fracturing	<u>%Fa</u>	<u>%Fs</u>
GRO 17169	78.959	CK4 CHONDRITE	A/B	A/B		11-15
GRO 17059	102.442	CK5 CHONDRITE	В	A/B	31	23
MIL 15094 AMU 17290 GRO 17004	10.636 14.393 52.933	CM2 CHONDRITE CM2 CHONDRITE CM2 CHONDRITE	Be Be Be	A/B B/C B/C	1-46 1-33 0-39	1 9
GRO 17063 GRO 17064	388.300 226.400	CR2 CHONDRITE CR2 CHONDRITE	B B	A A	9-38 1-36	12-17 9-19
MIL 15254 MIL 15255 MIL 15257	21.468 7.492 11.258	CV3 CHONDRITE CV3 CHONDRITE CV3 CHONDRITE	B B B	A A A	1-44 1-52 1-14	1 1-15 1-5

Chondrites

<u>Sample</u> <u>Number</u>	<u>Weight(g)</u>	Classification	Weathering	g Fracturing	<u>%Fa</u>	<u>%Fs</u>
DOM 14080	10.340	CHONDRITE UNGROUPED	C C	А	15	5-14

Н Туре

<u>Sample</u> Number	<u>Weight(g)</u>	Classification	Weathering Fracturing	<u>%Fa</u>	<u>%Fs</u>
DOM 14429 DOM 14491	40.145 18.830	H3.5 CHONDRITE H3.5 CHONDRITE	B A A A	5-44 9-41	8-25 2-2
		Iroi	ns		
<u>Sample</u> Number	<u>Weight(g)</u>	Classification	Weathering Fracturing	<u>%Fa</u>	<u>%Fs</u>
GRO 17051 GRO 17102	2805.950 4959.500	IRON-IAB IRON-IAB	А		
GRO 17195	75.770	IRON-UNGROUPED	А		

**Notes to Tables 1 and 2:

"Weathering" Categories:

- A: Minor rustiness; rust haloes on metal particles and rust stains along fractures are minor.
- B: Moderate rustiness; large rust haloes occur on metal particles and rust stains on internal fractures are extensive.
- C: Severe rustiness; metal particles have been mostly stained by rust throughout.
- E: Evaporite minerals visible to the naked eye.

"Fracturing" Categories:

- A: Minor cracks; few or no cracks are conspicuous to the naked eye and no cracks penetrate the entire specimen.
- B: Moderate cracks; several cracks extend across exterior surfaces and the specimen can be readily broken along the cracks.
- C: Severe cracks; specimen readily crumbles along cracks that are both extensive and abundant.

Classification of the ordinary chondrites in Table 1 & 2 was done by Energy Dispersive Spectroscopic (EDS) methods using a Scanning Electron Microscope (SEM). This can include the analysis of several olivine and pyroxene grains to determine the approximate Fayalite and Ferrosilite values of the silicates, grouping them into H, L or LL chondrites. Petrologic types are determined by optical microscopy and are assigned based on the distinctiveness of chondrule boundaries on broken surfaces of a 1-3 g chip. While this technique is suitable for general characterization and delineation of equilibrated ordinary chondrites, those undertaking detailed study of any meteorite classified by optical methods alone should use caution. It is recommended that a polished thin section be requested to accompany any chip and appropriate steps for a more detailed characterization)

Table 3

Tentative Pairings for New Meteorites

Table 3 summarizes possible pairings of the new specimens with each other and with previously classified specimens based on descriptive data in this newsletter issue. Readers who desire a more comprehensive review of the meteorite pairings in the U.S. Antarctic collection should refer to the compilation provided by Dr. E.R. D. Scott, as published in the Antarctic Meteorite Newsletter vol. 9 (no. 2) (June 1986). Possible pairings were updated in Meteoritical Bulletins 76, 79, 82 through 106, which are available online from the Meteoritical Society webpage:

http://www.lpi.usra.edu/meteor/metbull.php

CR2 CHONDRITE

GRO 17064 with GRO 17063

CV3 CHONDRITE

MIL 15255 and MIL 15257 with MIL 15254

EUCRITE

GRO 17049, GRO 17099 and GRO 17176 with GRO 17048 GRO 17098, GRO 17200, and GRO 17210 with GRO 17070 GRO 17211 with GRO 17039

H3.5 CHONDRITE

DOM14491 with DOM 14429

Petrographic Descriptions

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
DOM 14080	Dominion Range	22503	1.8 x 2.1 x 1.3	10.34	Chondrite Ungrouped

Macroscopic Description: Rachel Funk

Brown fusion crust with red/orange rust covers 50% of the exterior of this meteorite. The interior is a black matrix with red/orange rust and metal throughout.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section exhibits numerous small, well-defined chondrules up to 1.5 mm in a black matrix of fine-grained silicates, metal and troilite. Polysynthetically twinned pyroxene is abundant. The meteorite is moderately weathered. Olivine is Fa_{15} , pyroxene is Fs_{5-14} . The meteorite is a low FeO chondrite of type 4 (Russell et al., MAPS 1998). The meteorite is similar to Willaroy and Suwahib (Buwah).

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
DOM 14429	Dominion Range	22792	4.4 x 3.0 x 1.5	40.145	H3.5 Chondrite
DOM 14491		23415	2.2 x 2.0 x 2.0	18.830	

Macroscopic Description: Rachel Funk, Cecilia Satterwhite

The exteriors of these meteorites are covered with black/brown fusion crust; some rust is visible. The exposed surfaces reveal the interiors are a black matrix with gray, beige and white chondrules that are up to 3 mm in size.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The sections exhibit numerous small, well-defined chondrules (up to 1.5 mm) in a black matrix of finegrained silicates, metal and troilite. Weak shock effects are present. Polysynthetically twinned pyroxene is extremely abundant. The meteorites are highly weathered. Silicates are unequilibrated; olivines range from Fa₅₋₄₄ and pyroxenes from Fs₂₋₂₅. The meteorites are H3 chondrites (estimated subtype 3.5) and are likely paired.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
MIL 15094	Miller Range	24149	2.3 x 1.8 x 1.6	10.636	CM2 Chondrite

Macroscopic Description: Cecilia Satterwhite

80% of the exterior is brown/black fusion crust with fractures and evaporites; areas without fusion crust are dark brown with oxidation. The interior is a fine-grained black matrix with heavy oxidation in areas; light/ weathered specks/inclusions are visible and some areas are rusty.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small chondrules (up to 0.5 mm), mineral grains and CAIs set in a black matrix; rare metal and sulfide grains are present. Olivine compositions are Fa_{1-46} and one pyroxene analysis was Fs_1Wo_3 . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
MIL 15254	Miller Range	23335	3.1 x 2.7 x 1.6	21.468	CV3 Chondrite
MIL 15255		23397	2.8 x 1.8 x 0.6	7.492	
MIL 15257		23383	2.0 x 1.8 x 1.2	11.258	

Macroscopic Description: Cecilia Satterwhite

Exteriors of these meteorites have 50-60% black/brown fusion crust with heavy oxidation in some areas. The interiors are a dark gray to black matrix with oxidation scattered throughout; small white and weathered specks are visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The sections exhibit large chondrules (up to 3 mm) and CAIs in a dark matrix. Olivines range from $Fa_{0.52}$, and pyroxenes from $Fs_{1.15}$. The paired meteorites are moderately weathered, unequilibrated, CV3 carbonaceous chondrites.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
AMU 17290	Amundsen Glacier	24715	4.3 x 3.2 x 1.5	14.393	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite

Some black patches of fusion crust are on the exterior surface. The rest of the exterior is dark gray to black with fractures, pits and evaporite. There is one large hollow pit on one surface and some mm sized inclusions are visible. The interior is a dark gray to black matrix with some oxidation and tiny specks of lighter/ weathered colors.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small chondrules (up to 0.5 mm), mineral grains and CAIs set in a black matrix; rare metal and sulfide grains are present. Olivine compositions are $Fa_{0.33}$ with a peak at $Fa_{0.2}$. Orthopyroxene is Fs_{9} . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.	Location	Field No.	Dimensions (cm) Weight (g)	Classification
GRO 17004	Grosvenor Mountains	25740	5.0 x 4.3 x 2.3	52.933	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite

40% of the exterior has black, frothy, fractured and pitted fusion crust. The areas without fusion crust are brown and heavily fractured/pitted with rusty areas. Some weathered inclusions/chondrules and minor evaporites are visible. The interior is a black matrix with an evaporite rim on one surface, and some oxidation in areas. Some mm-sized weathered and white inclusions are visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small chondrules (up to 0.5 mm), mineral grains and CAIs set in a black matrix; rare metal and sulfide grains are present. Olivine compositions are $Fa_{0.39}$. Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.	Location	Field No.	Dimensions (cm)) Weight (g)	Classification
GRO 17006	Grosvenor Mountains	25708	4.5 x 3.0 x 2.0	40.372	Eucrite (Polymict)

Macroscopic Description: Cecilia Satterwhite

The exterior is 35% covered with black, glassy fusion crust. The exposed surface is a gray matrix with white clasts and minor amounts of rust. The meteorite is pitted. The fresh interior surface has a light gray and white matrix with white 1-2 mm white clasts and 1 mm sized rust spots.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section represents a single, coarse-grained, cataclastized, brecciated, cumulate eucrite. The section is composed of coarse (up to 2 mm) pyroxene and plagioclase, crosscut by numerous offset fractures. Mineral compositions are homogeneous with orthopyroxene ($Fs_{63-66}Wo_2$), with lamellae of augite ($Fs_{20-29}Wo_{52-66}$), and plagioclase ($An_{88-92}Or_{0.5}$). The Fe/Mn ratio of the pyroxene is ~31. The meteorite is a polymict eucrite.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17039	Grosvenor Mountains	25544	2.5 x 1.7 x 1.3	8.269	Eucrite (Polymict)
GRO 17211		25551	3.6 x 3.6 x 2.0	47.3	

Macroscopic Description: Rachel Funk, Kellye Pando, Cecilia Satterwhite

The exteriors of these meteorites have black glassy fusion crust. The exposed interiors have a gray matrix with white clasts throughout. The clasts are 2-4 mm in size and some are weathered to a beige color. There are some fractures cutting through the interiors of the meteorites. The fresh interiors have a light gray to white matrix with white clasts 2-4 mm in size. Minor amounts of orange rust are present.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The sections consist of a fine-grained brecciated matrix with up to 2.5 mm clasts of coarse-grained eucritic material. Mineral compositions are homogeneous with orthopyroxene ($Fs_{65}Wo_2$), lamellae of augite ($Fs_{27}Wo_{52-65}$), and plagioclase ($An_{88}Or_{0.5}$). The Fe/Mn ratio of the pyroxene is ~31. The meteorites are polymict eucrites.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17048	Grosvenor Mountains	25575	3.8 x 2.4 x 2.0	23.531	Eucrite (Polymict)
GRO 17049		25590	4.0 x 3.7 x 3.5	61.353	
GRO 17099		25736	3.2 x 2.8 x 2.6	26.701	
GRO 17176		25601	7.0 x 5.0 x 2.5	131.112	

Macroscopic Description: Rachel Funk, Cecilia Satterwhite

The exteriors range from 60% to 90% black, glassy fusion crust, with some rust spots. The exposed surfaces vary in color from gray to black to white, with white and tan clasts and minor amounts of rust. The fresh interior surfaces have light gray and white matrices with white 1-2 mm white clasts and 1 mm sized rust spots.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

These sections are similar enough to suggest that they represent a single, coarse-grained, cataclastized, brecciated, cumulate eucrite. The sections are composed of coarse (up to 2 mm) pyroxene and plagioclase crosscut by numerous offset fractures. Mineral compositions are homogeneous with orthopyroxene ($Fs_{63-66}Wo_2$), with lamellae of augite ($Fs_{20-29}Wo_{52-66}$), and plagioclase ($An_{88-92}Or_{0.5}$). The Fe/Mn ratio of the pyroxene is ~31. The meteorites are polymict eucrites.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17051	Grosvenor Mountains	25594	19.0 x 8.0 x 5.0	2805.95	Iron-IAB

Macroscopic Description: Cari Corrigan, Nicole Lunning, Tim McCoy

This roughly rectangular mass measures $\sim 20 \times 8 \times 6$ cm. One side is flattened with shallow indentations, likely regmaglypts, and exhibits both weathering (including an overall brownish stain and rust haloes) and whitish regions suggestive of evaporites. The other side exhibits deep indentation with evaporite deposits in the lowest portion of those indentations, suggestive of extensive weathering and possible ablation of less resistant phases.

Thick Section (,2) Description: Cari Corrigan, Nicole Lunning, Tim McCoy

This section exhibits a coarse Widmanstätten pattern with kamacite lamellae of ~1 mm in width. Kamacite exhibits subgrain boundaries and α_2 structure and some grains exhibit a distinct darkening and cross-hatching suggestive of Neumann bands. Taenite ranges from thin ribbons to coarser areas with well-developed plessitic structure. Brecciated and weathered inclusions of troilite and daubréelite are present. Taken together these features are suggestive of extensive shock. Compositionally, this iron has 7.3 wt.% Ni, and 0.08 wt.% P, determined from microprobe transects. Classification is uncertain, but the meteorite may be a IAB iron.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17059	Grosvenor Mountains	25507	8.0 x 3.0 x 2.5	102.442	CK5 Chondrite

Macroscopic Description: Cecilia Satterwhite

The exterior is 75% black fractured fusion crust with some gray matrix and evaporites visible. The interior is a gray matrix with some oxidation and tiny inclusions visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few large (up to 2 mm), poorly-defined chondrules in a matrix of finer-grained silicates, sulfides and very abundant magnetite. The meteorite displays little weathering, but is extensively shock blackened. Silicates are homogeneous. Olivine is Fa_{31} and orthopyroxene is Fs_{23} . The meteorite appears to be a CK5 chondrite.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17063	Grosvenor Mountains	25639	8.0 x 5.0 x 4.5	388.3	CR2 Chondrite
GRO 17064		25714	6.0 x 6.0 x 5.5	226.4	

Macroscopic Description: Cecilia Satterwhite

The exteriors have black fusion crust, patches on some surfaces; areas without fusion crust are black/gray with brown weathered areas; abundant inclusions/chondrules of various sizes and colors are visible; surfaces are pitted in areas. The interiors are dark gray to black in areas with some brown oxidation; abundant inclusions/chondrules of various sizes and colors are present.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The sections exhibit large (up to 2 mm), well-defined, metal-rich chondrules and CAIs in a dark matrix of FeO-rich phyllosilicate. Polysynthetically twinned pyroxene is abundant. Silicates are unequilibrated; olivines range from Fa_{1-38} , with most Fa_{0-2} , and pyroxenes from $Fs_{9-19}Wo_{1-2}$. The meteorites are likely paired CR2 chondrites.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17070	Grosvenor Mountains	25591	5.0 x 3.2 x 2.6	64.631	Eucrite (Unbrecciated)
GRO 17098		25637	3.4 x 2.7 x 2.5	38.752	
GRO 17200		25604	3.1 x 2.8 x 3.7	46.365	
GRO 17210		25766	6.5 3.2 x 4.6	184.233	

Macroscopic Description: Rachel Funk, Cecilia Satterwhite

The exteriors have 50-65% black, glassy fusion crust. The exposed surfaces show darker gray matrices with light gray and white inclusions and a slightly gray matrix with white and dark gray inclusions. The fresh surfaces reveal a gray matrix with darker gray and white inclusions. Minor amounts of rust are present.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The sections are dominated by coarse grained basaltic material which is unbrecciated and heavily shocked. Mineral compositions are homogeneous with orthopyroxene ($Fs_{61}Wo_{2-5}$), augite ($Fs_{25}Wo_{44}$), and plagio-clase ($An_{80-88}Or_{1-4}$). The Fe/Mn ratio of the pyroxene is ~33. The paired meteorites are coarse-grained, shocked, unbrecciated eucrites.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17102	Grosvenor Mountains	25624	12.0 x 11.5 x 10.0	4959.5	Iron-IAB

Macroscopic Description: Cari Corrigan, Nicole Lunning, Tim McCoy

This cone-shaped mass is $\sim 12x12x10$ cm. The rounded upper surface exhibits a pitted surficial layer overlying a smoother undersurface. Areas up to 3×8 cm are primarily this smoother undersurface suggestive of multiple generations of fusion crust formation. The underside is partially bound by a lip of fusion crust and is somewhat flattened but irregular with indentations up to 3 cm in dimension. Overall the meteorite has the appearance of an oriented individual.

Thin Section (,2) Description: Cari Corrigan, Nicole Lunning, Tim McCoy

This thick section exhibits a poorly developed Widmanstätten pattern with short, stubby kamacite lamellae (I/w=3-4). Kamacite lamellae often contain horsetail graphite in the direction of elongation of the lamellae. Coarse schreibersite and taenite up to 0.5 mm in width with plessitic interiors present. Inclusions of sphalerite are found as minor phases. Weathering is pervasive on the edges of the meteorite. No fusion crust was observed, but α_2 structure extends ~2 mm into the section. Compositionally, this iron has 8.0 wt.% Ni, and 0.08 wt.% P, determined from microprobe transects. The composition, structure and inclusions suggest that this meteorite is a IAB iron.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17168	Grosvenor Mountains	25784	5.5 x 5.0 x 3.3	133.858	Eucrite (Polymict)

Macroscopic Description: Rachel Funk, Cecilia Satterwhite

The exterior is 85% covered by black, glassy fusion crust. The exposed surface has a gray matrix with tan and white clasts (up to 2 mm in size). Some of the clasts have minor rust around them. The fresh interior is a light gray matrix with abundant beige clasts that are up to 5 mm in size. There are some white inclusions present.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The meteorite is dominated by fine-grained (~200 micron average grain size) basaltic material which occurs as both the host and clasts within the meteorite. Clasts up to 0.5 mm exhibit acicular to equigranular textures. Mineral compositions are homogeneous with orthopyroxene ($Fs_{64}Wo_2$), with lamellae of augite ($Fs_{28}Wo_{43}$), and plagioclase ($An_{64}Or_{0.5}$). The Fe/Mn ratio of the pyroxene is ~32. The meteorite is a polymict eucrite.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17169	Grosvenor Mountains	25798	5.4 x 4.4 x 2.5	78.959	CK4 Chondrite

Macroscopic Description: Cecilia Satterwhite

The exterior is 85% covered with black/brown fractured fusion crust. Some gray matrix is visible and is pitted and weathered in areas. The interior is a gray matrix with mm sized light, dark and weathered inclusions and minor oxidation.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of large (up to 2 mm), well-defined chondrules in a matrix of finer-grained silicates, sulfides and very abundant magnetite. The meteorite is little weathered, but extensively shock blackened. Silicates are homogeneous. Olivine is Fa_{33} and orthopyroxene is Fs_{11-15} . The meteorite is a CK4 chondrite.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17175	Grosvenor Mountains	25513	4.2 x 3.8 x 3.4	94.864	Diogenite

Macroscopic Description: Rachel Funk, Cecilia Satterwhite

The exterior is 25% covered in black, patchy fusion crust. The exposed interior has an overall greenish color. The matrix is gray and beige with some white clasts. The surface is heavily pitted with a cave-like structure in the center of the sample. Some green crystals are visible to the naked eye. The fresh interior shows a fine-grained beige, gray and white matrix. Some green crystals are visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

This meteorite consists of small (~200 micron average) fragments of basaltic material which occur as both the host and clasts within the meteorite. Occasional coarser grains and clasts (with sizes up to 0.5 mm) are observed. Mineral compositions are homogeneous with orthopyroxene ($Fs_{30}Wo_2$), with lamellae of augite ($Fs_{12}Wo_{44}$), and plagioclase ($An_{92}Or_{0.5}$). The Fe/Mn ratio of the pyroxene is ~29. Orthopyroxene is the dominant modal phase, which makes this meteorite a diogenite.

Sample No.	Location	Field No.	Dimensions (cm)	Weight (g)	Classification
GRO 17189	Grosvenor Mountains	25797	3.5 x 2.5 x 1.7	25.324	Eucrite (Polymict)

Macroscopic Description: Rachel Funk, Cecilia Satterwhite

The exterior is 70% covered in black glassy fusion crust. The exposed surface is a gray matrix with black veins running along fractures. There are white inclusions present. There are minor amounts of rust near the fusion crust. The fresh surface shows a coarse-grained gray matrix with white inclusions. There are fractures with black veins running along them

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section is dominated by a single clast of fine-grained eucritic material, with adhering brecciated, fine to coarse eucritic fragments. Mineral compositions are homogeneous with orthopyroxene ($Fs_{60}Wo_2$), augite ($Fs_{26}Wo_{43}$), and plagioclase ($An_{90-92}Or_{0.5}$). The Fe/Mn ratio of the pyroxene is ~31. The meteorite is a polymict eucrite.

Sample No. Location Field No. Dimensions (cm) Weight (g) Classification

 GRO 17195
 Grosvenor Mountains 25771
 3.0 x 2.9 x 2.0
 75.77
 Iron-Ungrouped

Macroscopic Description: Cari Corrigan, Nicole Lunning, Tim McCoy

This very small meteorite is roughly equidimensional triangular shaped and measures 3x3x2 cm. The meteorite appears to have been lodged in soil with one side slightly flattened and coated in evaporite deposits. The rounded, upper side exhibits a pronounced Widmanstätten pattern on the exterior surface formed by preferential ablation by windborne particles in Antarctica. The exposed Widmanstätten pattern has band widths of ~1 mm, suggesting a medium octahedrite.

Thick Section (,2) Description: Cari Corrigan, Nicole Lunning, Tim McCoy

This thick section exhibits a well-developed Widmanstätten pattern with kamacite lamellae average width of 0.6 mm. Taenite exhibits extensive plessite development. Throughout the section, α_2 structure is present suggesting reheating. Single inclusions of chromite and schreibersite were observed. Fusion crust is absent but a few pockets of micromelting and dendritic crystallization were observed at the weathered surface. Compositionally, this iron has 10.1 wt.% Ni, and 0.04 wt.% P, determined from microprobe transects. The relatively high Ni and low P concentrations are unlike any of the major groups, suggesting an ungrouped classification.

Sample	Weight (g)	AMN Classification	New Classification	Magnetic Susceptibility	Pairing Group	AMN
DOM 08001	1305 400	Fuc Brec	_	3 47		33.1
DOM 08002	173 220	LL (Imp Melt)	_	3.86		33.1
DOM 08003	108 980	CM2	_	3.27		33.1
DOM 08004	294 500	CO3	_	4 89		32.2
DOM 08005	88 760	Euc Brec	_	3 16		32.2
DOM 08006	667 300		_	4 92		32.2
DOM 08007	24 732	<u>Н5</u>		4.92		33.1
	27.070	Fuc Brec	_	2.80		33.1
DOM 08012	18 550	Liroilito	_	2.00		32.2
DOM 08012	28 750	CM2	-	3.87		32,2
DOM 08014	20.750	Euc Brec	-	2 71		32,2
DOM 08014	1021 100		-	2.71		JZ,Z
DOM 08017	1021.100	16	-	4.00		40,1
DOM 08010	1447.000		-	4.03		40,1
DOM 08020	1434.400		-	4.03		40,1
DOM 08020	1020.000		-	4.04		40,1
	1009.100		-	4.04		40,1
DOIM 08022	825.300	LLƏ	Lo	4.89		34,1
DOM 08023	834.100	LO	-	4.57		40,1
DOM 08024	912.300	LL6	Lo	4.72		34,2
DOM 08025	566.100	Lo	-	4.44		40,1
DOM 08026	222.480	LL6	Lo	4.68		34,1
DOM 08027	240.580	LL6	-	3.29		34,2
DOM 08028	281.720	L5	H5	5.10		34,2
DOM 08029	227.020	LL5	-	4.39		34,2
DOM 08030	255.300	L5	-	4.88		34,2
DOM 08031	325.900	L6	-	4.66		40,1
DOM 08032	212.400	LL5	L5	4.62		34,1
DOM 08033	319.700	LL5	L5	4.99		34,1
DOM 08034	96.897	L5	-	4.87		34,1
DOM 08035	251.400	LL6	-	4.26		34,1
DOM 08036	153.126	LL6	L6	4.54		34,2
DOM 08037	1/2.556	LL5	L5	4.49		34,1
DOM 08038	131.332	LL6	L6	4.50		34,1
DOM 08039	89.830	LL6	-	4.40		34,1
DOM 08040	106.713	LL6	L6	4.61		34,1
DOM 08041	145.774	LL5	L5	4.60		34,1
DOM 08042	125.488	LL6	L6	4.54		34,1
DOM 08043	83.450	LL5	L5	4.57		34,1
DOM 08044	124.432	LL6	H6	5.01		34,1
DOM 08045	82.859	LL6	-	4.34		34,1
DOM 08046	122.367	LL5	L5	4.80		34,1
DOM 08047	78.808	LL6	L6	4.69		34,1
DOM 08048	64.815	LL6	-	4.19		34,1
DOM 08049	70.331	LL5	L5	4.60		34,1
DOM 08050	154.162	LL6	L6	4.55		34,1
DOM 08051	193.111	LL5	L5	4.57		34,1
DOM 08052	88.684	LL5	L5	4.48		34,1
DOM 08053	74.637	LL5	L5	4.58		34,1
DOM 08054	68.210	L6	-	4.86		34,1
DOM 08055	44.344	LL6	L6	4.65		34,1
DOM 08056	65.944	LL6	L6	4.62		34,1
DOM 08057	44.239	L6	LL6	4.31		34,1

Table of Reclassification and magnetic susceptibility of Dominion Range samples

Sample	Weight (g)	AMN	New	Magnetic	Pairing	AMN
		Classification	Classification	Susceptibility	Group	
DOM 08058	54.151	LL6	-	4.36		34,1
DOM 08059	88.031	LL6	L6	4.62		34,1
DOM 08060	49.430	LL6	L6	4.66		34,2
DOM 08061	48.430	L5	H5	4.97		34,1
DOM 08062	51.570	LL6	L6	4.64		34,1
DOM 08063	58.740	LL6	L6	4.69		34,2
DOM 08064	39.290	L5	H5	4.98		34,1
DOM 08065	56.250	LL6	L6	4.62		34,2
DOM 08066	115.570	LL5	H5	4.98		34,1
DOM 08067	28.870	LL6	L6	4.68		34,2
DOM 08068	19.120	LL6	L6	4.54		34.2
DOM 08069	33.980	LL6	L6	4.65		34.2
DOM 08070	35.060	LL6	L6	4.70		34.2
DOM 08071	23.000	L6	_	4.49		34.2
DOM 08072	28.420		16	4.64		34.2
DOM 08073	25 020	116	16	4 66		34.2
DOM 08074	38 700	116	16	4 61		34.2
DOM 08075	20 910		16	4 58		34.2
DOM 08076	16 480		16	4.68		34.2
	10.400			4.58		34.1
DOM 08078	16 780			4.30		34.2
DOM 08078	12 520			4.73		34,2
DOM 08079	140.956			4.71		34,Z
	149.000			4.49		34, I 24 1
	193.470		LO	4.00		34,1
DOM 00002	200.200		LO	4.03		34,1
DOM 08084	220.100			4.52		34,1
DOM 08084	247.900	L5	LL5	4.14		34,1
DOM 08085	10.310	LL6	Lb	4.62		34,2
DOM 08086	28.770	LL5	L5	4.66		34,2
DOM 08087	38.230	LL5	H5	4.97		34,1
DOM 08088	34.110	L5	H5	4.98		34,2
DOM 08089	53.070	LL6	L6	4.71		34,1
DOM 08090	33.880	LL6	L6	4.68		34,1
DOM 08091	31.760	L6	H6	5.02		34,2
DOM 08092	47.760	LL6	L6	4.58		34,2
DOM 08093	24.370	LL5	L5	4.70		34,2
DOM 08094	55.760	L5	-	4.60		34,2
DOM 08095	18.000	L5	-	4.64		34,2
DOM 08096	28.070	LL6	H6	4.95		34,1
DOM 08097	56.360	LL6	L6	4.63		34,1
DOM 08098	21.300	LL5	L5	4.60		34,2
DOM 08099	21.240	L6	-	4.71		34,2
DOM 08100	15.360	LL6	L6	4.60		34,2
DOM 08101	22.740	LL6	L6	4.71		34,2
DOM 08102	18.860	LL6	L6	4.43		34,2
DOM 08103	14.660	LL5	H5	5.00		34,1
DOM 08104	28.840	LL6	L6	4.57		34,1
DOM 08105	13.720	LL6	L6	4.62		34,2
DOM 08106	16.240	LL6	L6	4.55		34.2
DOM 08107	16.940	LL6	L6	4.72		34.2
DOM 08108	14.920	LL6	L6	4.65		34.2
DOM 08109	23,280	LL5	H5	4.96		34.2
DOM 08110	85 990	16	H6	5.10		34.1
DOM 08111	36.290	L6	H6	4.95		34,1
			-			,

Sample	Weight (g)	AMN Classification	New Classification	Magnetic Suscontibility	Pairing	AMN
DOM 09112	20 702				Group	24.1
DOM 08112	59 503		LO	4.51		34,1
DOM 08113	27 022		LU	4.41		34,1
DOM 00114	27.032		-	4.12		34,1
DOM 08115	05.307		-	5.00		34,1
	95.774	LLO	LO	4.48		34,1
DOM 08117	43.898	CH	-	5.00		34,1
DOM 08118	102.806	L5	-	4.50		34,1
DOM 08119	54.746	LL5	L5	4.48		34,1
DOM 08122	11.320	LG	H6	5.15		34,2
DOM 08123	20.310	LL6	L6	4.69		34,2
DOM 08124	18.190	LL6	L6	4.74		34,2
DOM 08125	20.880	L6	-	4.62		34,2
DOM 08126	13.520	L5	H5	5.33		34,2
DOM 08127	14.950	L5	-	4.66		34,2
DOM 08128	18.290	LL6	L6	4.60		34,2
DOM 08129	14.240	LL6	L6	4.50		34,2
DOM 08130	17.230	H5	L5	4.70		34,2
DOM 08132	14.500	LL6	L6	4.61		34,2
DOM 08134	14.860	L5	H5	5.17		34,2
DOM 08135	12.750	L5	-	4.45		34,2
DOM 08136	18.820	H5	-	5.09		34,2
DOM 08137	13.690	LL6	H6	5.05		34,2
DOM 08139	21.760	CO3	-	4.82	DOM 08004	34,2
DOM 08140	39.080	LL6	L6	4.71		34,2
DOM 08141	20.350	LL6	L6	4.67		34,2
DOM 08142	21.120	L5	H5	5.14		34,2
DOM 08143	13.940	L6	H6	5.12		34,2
DOM 08144	35.280	L5	H5	4.98		34,2
DOM 08145	20.420	L5	H5	5.26		34,2
DOM 08146	30.000	LL5	L5	4.57		34,2
DOM 08147	44.110	LL6	L6	4.52		34,2
DOM 08148	33.990	LL6	L6	4.72		34,2
DOM 08149	43.390	H6	-	5.07		34,2
DOM 08150	12.155	LL6	L6	4.69		34,2
DOM 08151	18.503	LL6	L6	4.68		34,2
DOM 08152	17.008	H5	L5	4.54		34.2
DOM 08154	10.426	L5	-	4.85		34.2
DOM 08155	22.170	LL6	L6	4.58		34.2
DOM 08156	14.367	LL6	L6	4.74		34.2
DOM 08157	19.071	LL6	L6	4.78		34.2
DOM 08159	13.823	L5	-	4.63		34.2
DOM 08160	35.594	LL6	L6	4.46		34.2
DOM 08161	18.814		-	4.26		34.2
DOM 08162	31 194	H4	14	4 63		34.2
DOM 08163	19 877	16	H6	5.08		34.2
DOM 08164	60.688	15	H5	5 11		34.2
DOM 08165	49 991	<u> </u>	16	4 52		34.2
DOM 08166	38 158	16	H6	5.03		34.2
DOM 08167	37 288	H5	-	4 91		34 2
DOM 08168	20 418	15	Н5	5.07		34.2
	20.410	16	HA	4 95		34.2
	10 020		16	т.95 Л 63		34 2
	17 350		16	4.60 1.60		34 2
	38 010	He		4.02		34.2
	30.010	1 IO	LO	4.09		54,2

Sample	Weight (g)	AMN	New	Magnetic	Pairing	AMN
DOM 00470	45.050	Classification	Classification	Susceptibility	Group	24.0
DOM 08173	15.350	LL6	LO	4.50		34,2
DOM 08174	28.380	LLO	LO	4.08		34,2
DOM 08175	15.010	LLO	LO	4.00		34,2
DOM 08177	31.030	LLO	LO	4.02		34,Z
DOM 08178	22.450	LLO	LO	4.71		34,Z
DOM 08179	29.780		LO	4.50		34,Z
DOM 00100	22.740	LLO	LO	4.09		34,Z
DOM 00101	35.240			4.37		34,Z
DOM 09192	42.000	LLƏ	LO	4.70		34,Z
DOM 00103	20.290		-	4.04		34,Z
DOM 00104	32.790		LO	4.00		34,Z
DOM 08186	49.290			4.07		34,Z
DOM 08180	27 800			4.72		34,2
DOM 08188	27.090	LLO	LU	4.07		34,2
DOM 08180	30 760		-	4.00		34.2
DOM 08109	15 460			4.00		34.2
DOM 08190	10.400			4.01		34,2
DOM 08197	23 320			4.01		34.2
DOM 08192	20.020			4.07		34,2
DOM 08193	20.200			4.54		34,2
DOM 08194	14.330			4.00		34,2
DOM 08195	40.730			4.52		34,2
DOM 08190	20.330			4.94		34,2
DOM 08197	12 990			4.00		34,2
DOM 08190	21 620		L0 H5	4.00		34,2
DOM 08200	15 020		ТЮ	J. 10 1 26		34,2
DOM 08200	21 108		-	4.20		34,1
DOM 08201	21.100	15	-	4.67		34.1
DOM 08202	33 172		_	4 13		34.1
DOM 08203	24 069		16	4.10		34.1
DOM 08205	17 656		16	4.40		34.1
DOM 08206	38 973		16	4 58		34.1
DOM 08207	22 579		16	4.88		34 1
DOM 08208	27.053		16	4.60		34.1
DOM 08209	25 4 18	16	-	4.63		34.1
DOM 08210	15 943	116	16	4 42		34.1
DOM 08211	12 620	116	16	4 63		34 1
DOM 08215	14 553	116	16	4 53		34.1
DOM 08216	13 031	16	-	4 61		34.1
DOM 08217	13 350	116	16	4 80		34 1
DOM 08218	18 343	16	-	4 76		34 1
DOM 08219	21 854	116	H6	4 94		34 1
DOM 08221	41 190	116	16	4 68		34.2
DOM 08222	16 640	116	16	4 63		34.2
DOM 08223	21 310	116	16	4 63		34.2
DOM 08224	31 560	16	-	4 67		34.2
DOM 08225	21 690	116	16	4.65		34.2
DOM 08226	21 220	116	16	4.67		34.2
DOM 08227	20 360	16	-	4 69		34.2
DOM 08228	18 070	<u> </u>	16	4 65		34.2
DOM 08229	11 240	116	16	4 64		34.2
DOM 08230	29 612	116	16	4 53		34.1
DOM 08231	23.262	LL6	L6	4.56		34,1
	-			-		,

Sample	Weight (g)	AMN	New	Magnetic	Pairing	AMN
	• •••	Classificatio	n Classification	Susceptibility	Group	
DOM 08232	20.378	LL6	L6	4.71		34,1
DOM 08233	18.884	LL6	L6	4.71		34,1
DOM 08234	37.491	LL5	L6	4.55		34,1
DOM 08235	25.801	LL6	L6	4.67		34.1
DOM 08236	27,559	H6	_	4.95		34.1
DOM 08237	31 324	116	16	4 56		34 1
DOM 08238	29 901	116	16	4 63		34.1
DOM 08239	24 191	H5	-	5 15		34.1
DOM 08240	37 443	116	_	4 40		34.1
DOM 08241	20 557		_	4 22		34.1
DOM 08242	25 113	He	16	4.58		3/ 1
DOM 08242	43 244			4.50		3/ 1
DOM 08243	45.244			4.45		2/ 1
DOM 00244	40.004		LO	4.44		24,1
DOM 08245	42.200		LO	4.40		34, I 24 4
DOM 00240	42.321		-	4.34		34,1
DOM 08247	01.735	LLO	Lo	4.55		34,1
DOM 08248	32.946	LL6	-	4.33		34,1
DOM 08249	72.204	LL5	L5	4.76		34,1
DOM 08250	22.930	L6	-	4.66		34,2
DOM 08251	20.010	LL6	L6	4.65		34,2
DOM 08252	28.770	LL6	L6	4.66		34,2
DOM 08253	37.880	LL6	L6	4.69		34,2
DOM 08254	25.510	LL6	L6	4.68		34,2
DOM 08255	29.290	LL6	L6	4.68		34,2
DOM 08256	78.460	LL5	-	4.17		34,2
DOM 08257	19.780	L5	-	4.67		34,2
DOM 08258	48.390	LL6	-	4.35		34,2
DOM 08259	64.170	LL6	L6	4.71		34,2
DOM 08261	22.610	L6	-	4.66		34,2
DOM 08262	15.010	LL6	L6	4.66		34,2
DOM 08263	12.430	L5	H5	5.03		34,2
DOM 08266	30.060	LL6	L6	4.56		34,2
DOM 08267	19.840	LL6	L6	4.64		34,2
DOM 08268	30.000	LL6	L6	4.73		34.2
DOM 08269	29.320	LL6	L6	4.55		34.2
DOM 08270	29.520		L6	4.51		34.2
DOM 08271	64 990	16	H6	4.98		34.2
DOM 08272	52 670	116	-	4 16		34.2
DOM 08273	56 600	116	16	4 77		34.2
DOM 08274	33 150		16	4.63		34.2
DOM 08275	60,900		16	4.65		34.2
DOM 08276	36,800		16	4.66		34.2
DOM 08277	21 040		16	4.50		34.2
DOM 08278	21.0 4 0 83.610			4.33		34.2
DOM 08270	30.850			4.70		34.2
DOM 00279	22 070		LU	4.40		24.2
	23.970		-	4.00		04,∠ 24.2
	10.020			4.00		J4,∠ 24 D
	20.810		LO	4.01		ა4,∠ 24.2
DOM 08285	25.020	LLG	Lb	4.52		34,2
DOM 08287	12.600	LL6	L6	4.68		34,2
DOM 08288	13.990	L6	LL6	4.31		34,2
DOM 08290	24.820	LL6	L6	4.78		34,2
DOM 08291	28.720	LL6	L6	4.48		34,2
DOM 08292	29.170	LL5	L5	4.63		34,2

Sample	Weiaht (a)	AMN	New	Magnetic	Pairing	AMN
		Classification	Classification	Susceptibility	Group	
DOM 08293	20.820	LL6	L6	4.68	-	34,2
DOM 08294	28.710	L6	-	4.82		34,2
DOM 08295	28.510	H5	L5	4.76		34,2
DOM 08296	23.700	L6	H6	5.19		34,2
DOM 08297	57.090	LL6	L6	4.69		34.2
DOM 08298	23,920	116	16	4.61		34.2
DOM 08299	22,160	116	16	4.60		34.2
DOM 08302	15 610	16	-	4 66		34.2
DOM 08303	11 120	16	-	4 78		34.2
DOM 08306	13 290	16	_	4 58		34.1
DOM 08312	12 870		16	4.60		34.1
DOM 08313	18 520	15	L0 H5	4.00		34.2
DOM 08314	12 800	16	HG	4.91		34.2
DOM 08316	20.340		16	4.51		3/ 1
DOM 00310	20.340			4.00		24.0
DOM 00317	20.170			5.02		34,Z 24.4
DOM 00319	19.100		LO	4.70		34,1
DOM 08321	14.100		LO	4.60		34,1
DOM 08323	15.870	L5	CH CH	4.96		34,2
DOM 08324	12.410	LL6	Lo	4.54		34,2
DOM 08325	18.850	LLG	-	3.98		34,1
DOM 08326	19.120	LL6	L6	4.70		34,1
DOM 08328	19.540	LL6	L6	4.57		34,1
DOM 08330	18.040	L6	-	4.64		33,2
DOM 08331	21.010	H6	L6	4.89		33,2
DOM 08332	24.030	L6	-	4.56		33,2
DOM 08333	35.640	LL6	L6	4.61		33,2
DOM 08334	19.760	LL6	-	3.57		34,1
DOM 08335	30.580	L6	-	4.72		34,1
DOM 08336	26.110	LL6	L6	4.78		33,2
DOM 08337	27.620	L (Imp Melt)	-	4.60	DOM 08397	34,1
DOM 08338	18.980	L6	-	4.80		33,2
DOM 08339	34.840	LL6	L6	4.65		33,2
DOM 08344	11.380	L6	H6	5.14		34,1
DOM 08347	10.320	L6	H6	5.17		34,1
DOM 08351	26.300	CO3	-	4.88	DOM 08004	34,1
DOM 08352	14.630	H6	LL6	4.20		33,2
DOM 08353	12.680	L5	-	4.65		34.1
DOM 08356	10.960	LL6	L6	4.62		33.2
DOM 08359	21.350	LL6	L6	4.52		33.2
DOM 08360	14.610	16	116	4.35		34.2
DOM 08361	38 720	116	16	4 53		34.2
DOM 08362	19 780	116	16	4 55		34.2
DOM 08363	24 290	116	16	4 67		34.2
DOM 08364	29.250		15	4.07		34.2
DOM 08365	18 070		LJ	4.75		34.2
DOM 08366	10.370		-	4 .00 5.10		34.2
DOM 08367	20.730	L0 H6	-	5.10		3/1 2
	20.330		-	J.20 1 60		3/ 2
	20.40U			4.00		J4,∠ 24 D
	10.040		LO	4.0Z		54,Z
	03.270		-	0. IU		୦ 4 , । ୦୦.୦
DOM 08391	80.620	HO	LLO	4.11		33,∠ 24.¢
DOM 08392	79.100	Lb	-	4.55		34,1
DOM 08393	34.170	LL6	LG	4.68		33,2
DOM 08394	42.430	LL6	L6	4.58		33,2

Sample	Weight (g)	AMN	New	Magnetic	Pairing	AMN
p.o		Classification	Classification	Susceptibility	Group	
DOM 08395	53.210	LL6	L6	4.44		33,2
DOM 08396	44.790	LL5	L5	4.76		33,2
DOM 08397	68.770	L (Imp Melt)	LL (Imp Mel	t) 4.35		34,1
DOM 08398	59.710	LL5	L5	4.55		33,2
DOM 08399	85.500	L6	-	4.66		33,2
DOM 08400	49.910	L6	H6	4.94		34,2
DOM 08401	97.860	L5	H5	4.93		34.2
DOM 08402	55,750	L5	H5	5.08		34.2
DOM 08403	78.670	L5	_	4.89		34.2
DOM 08404	70.270	16	H6	5.02		34.2
DOM 08405	92 800	15	H5	5.13		34.2
DOM 08406	45 880	15	H5	5.04		34.2
DOM 08407	115 610	16	H6	5.09		34.2
DOM 08408	71 320	116	16	4 77		34.2
	76.490		-	4.77		34.2
DOM 08410	20 340	16	HG	5.22		34.2
DOM 08411	17 380		15	1.65		33.2
DOM 08412	37 650		15	4.05		33,2
DOM 00412	22 520		LJ	4.74		33,Z
DOM 00413	32.320	LLJ	LJ	4.30 E 1E		33,∠ 22.2
DOM 00414	41.960		-	D. 1D		<i>33,</i> ∠
DOIM 08415	41.960		-	4.48		33,Z
DOM 08416	82.040	LL5	L5	4.66		33,2
DOM 08417	31.520	L6	-	4.64		33,2
DOM 08418	29.610	LG	-	4.65		33,2
DOM 08419	92.950	L5	-	4.62		33,2
DOM 08420	54.750	LL6	L6	4.56		34,2
DOM 08421	49.060	LL6	L6	4.66		34,2
DOM 08422	17.850	LL6	L6	4.60		34,2
DOM 08423	24.930	LL5	L5	4.78		34,2
DOM 08424	53.090	LL6	L6	4.70		34,2
DOM 08425	31.410	LL6	L6	4.61		34,2
DOM 08426	24.780	LL6	L6	4.59		34,2
DOM 08427	45.010	LL6	L6	4.58		34,2
DOM 08428	19.720	LL6	L6	4.64		34,2
DOM 08429	23.270	LL6	L6	4.52		34,2
DOM 08430	108.680	LL5	L5	4.71		33,2
DOM 08431	128.920	LL6	L6	4.70		33,2
DOM 08432	59.780	LL5	L5	4.69		33,2
DOM 08433	65.880	LL5	L5	4.65		33,2
DOM 08434	85.580	LL6	L6	4.80		33,2
DOM 08435	60.460	H6	-	4.91		33,2
DOM 08436	147.270	LL5	-	3.85		33,2
DOM 08437	45.470	LL6	L6	4.61		33.2
DOM 08438	113.070	116	16	4.76		33.2
DOM 08439	106 190	116	16	4 68		33.2
DOM 08440	29 700	15	-	4 68		34 1
DOM 08441	12 740	16	_	4 67		34 1
DOM 08442	14 230	 H5	15	4 66		34 1
DOM 08443	20 120	15	L0 H5	5.05		34.1
	36 750	15	-	4 60		34,1
	12 330	16	_	4.00 1.55		3/1
	25.000	15	-	 1.61		3/1
	19 610	16	-	4.04		34, I 24 1
	10.010		-	4.01		34, I 24 1
	07.030	LLJ	LO	4.00		34,1

Sample	Weight (g)	AMN Classification	New Classification	Magnetic Suscentibility	Pairing Group	AMN
DOM 08449	40 540			4 62	Cloup	34.1
DOM 08450	20 4 10		15	4 72		34.1
DOM 08451	11 590	16	-	4.63		34.1
DOM 08453	14 890	16	_	4.00		34.1
DOM 08454	30 430		15	4 61		34.1
DOM 08455	18 980	H6	-	5 10		34.1
DOM 08456	10.000	H6	16	4 62		34.1
DOM 08457	16 950	116	16	4 73		34 1
DOM 08458	19 200	116	16	4 71		34.1
DOM 08459	21 270	116	16	4 61		34.1
DOM 08460	53 410	11.5	15	4 68		34.1
DOM 08461	122 410	16	H6	4 97		34 1
DOM 08462	133 880	115	15	4.57		34 1
DOM 08463	160.890	11.5	H5	4.92		34 1
DOM 08464	72 600	16	H6	4 98		34.1
DOM 08465	92 500	16	H6	5.06		34 1
DOM 08466	48 680	115	15	4 65		34 1
DOM 08467	82 490		15	4.50		34 1
DOM 08468	64 810	H3 5	135	4.57		34.1
DOM 08469	148 790	115	15	4.60		34.1
DOM 08470	36 313		16	4.62		34.1
DOM 08471	31 255		16	4.66		34.1
DOM 08472	18 503		15	4.56		34.1
DOM 08473	14 869		15	4.50		34.1
DOM 08474	17 445		16	4.57		34.1
DOM 08475	17 927	15	-	4.00		34.1
DOM 08476	25.079	CV/3	_	3 50		34.1
DOM 08477	14 539	115	15	4 70		34.1
DOM 08478	21 157		15	4.70		34 1
DOM 08479	11 899	16	-	4.56		34.1
DOM 08480	14 450	L0 H5	15	4.60		34 1
DOM 08482	21 400	116	16	4.50		34 1
DOM 08483	19 200	16	-	4 63		34.1
DOM 08484	22,370	116	16	4 66		34.1
DOM 08485	18 310	116	16	4 54		34.1
DOM 08486	23 040	116	16	4 53		34.1
DOM 08487	25 210		16	4.50		34 1
DOM 08488	25 210	116	16	4 65		34.1
DOM 08489	12 890	11.5	15	4 67		34.1
DOM 08490	18 540	116	16	4 46		34 1
DOM 08491	34 470	15	-	4 63		34 1
DOM 08492	35 650	116	16	4 46		34.1
DOM 08493	22 760	11.5	15	4 59		34.1
DOM 08494	21 190	16	H6	4.00 5.01		34 1
DOM 08495	38,060	H6	-	4 96		34 1
DOM 08496	15 530	16	H6	5.03		34.1
DOM 08497	28 720	16	-	4 47		34.1
DOM 08498	16 910	116	16	4 49		34 1
DOM 08499	55 380		16	4 60		34 1
DOM 08500	65 836		16	4 59		34 1
DOM 08501	68 736		L0 H5	5.04		34 1
DOM 08502	68 757		16	4 56		34 1
DOM 08502	15 281		-	4.00 4.01		34 1
DOM 08504	51 177		16	4.47		34 1
201100004	51.177			6.71		U 1, 1

Sample	Weight (g)	AMN	New	Magnetic	Pairing	AMN
		Classification	Classification	Susceptibility	Group	
DOM 08505	42.396	L6	-	4.57		34,1
DOM 08506	48.880	LL6	-	4.16		34,1
DOM 08507	37.465	LL6	-	4.32		34,1
DOM 08508	28.471	L6	-	4.54		34,1
DOM 08509	29.255	H5	L5	4.64		34,1
DOM 08510	166.495	LL6	-	4.09		33,2
DOM 08511	124.851	LL6	-	3.54		33,2
DOM 08512	208.315	LL5	-	4.37		33,2
DOM 08513	102.151	LL5	L5	4.69		33,2
DOM 08514	67.101	LL6	L6	4.78		33,2
DOM 08515	16.188	LL6	L6	4.71		34,1
DOM 08516	21.981	LL6	L6	4.52		34,1
DOM 08517	28.403	LL6	L6	4.55		34,1
DOM 08518	18.932	LL6	L6	4.71		34,1
DOM 08519	22.642	H6	L6	4.89		34,1
DOM 08520	31.077	LL6	L6	4.56		34,1
DOM 08521	15.972	LL6	L6	4.48		34,1

Sample Request Guidelines -

The Meteorite Working Group (MWG), is a peer-review committee which meets twice a year to guide the collection, curation, allocation, and distribution of the U.S. collection of Antarctic meteorites. The deadline for submitting a request is 2 weeks prior to the scheduled meeting.

Requests that are received by the MWG secretary by **Sept. 20, 2018** deadline will be reviewed at the MWG meeting on **Oct. 4-5 in Washington, DC.** Requests that are received after the deadline may be delayed for review until MWG meets again in the **Spring of 2019**. Please submit your requests on time. Questions pertaining to sample requests can be directed to the MWG secretary by e-mail, fax or phone.

Requests for samples are welcomed from research scientists of all countries, regardless of their current state of funding for meteorite studies. Graduate student requests should have a supervising scientist listed to confirm access to facilities for analysis. All sample requests will be reviewed in a timely manner. Sample requests that do not meet the curatorial allocation guidelines will be reviewed by the Meteorite Working Group (MWG). Issuance of samples does not imply a commitment by any agency to fund the proposed research. Requests for financial support must be submitted separately to an appropriate funding agency. As a matter of policy, U.S. Antarctic meteorites are the property of the National Science Foundation, and all allocations are subject to recall.

Samples can be requested from any meteorite that has been made available through announcement in any issue of the *Antarctic Meteorite Newsletter* (beginning with 1(1) in June, 1978). Many of the meteorites have also been described in five *Smithsonian Contributions to the* *Earth Sciences*: Nos. 23, 24, 26, 28, and 30. Tables containing all classified meteorites as of August 2006 have been published in the Meteoritical Bulletins and *Meteoritics* and *Meteoritics* and *Meteoritics* and *Planetary Science*.

They are also available online at:

http://www.meteoriticalsociety.org/ simple_template.cfm?code= pub_bulletin

The most current listing is found online at:

http://curator.jsc.nasa.gov/antmet/ us_clctn.cfm

All sample requests should be made electronically using the form at:

http://curator.jsc.nasa.gov/ antmet/requests.cfm

The purpose of the sample request form is to obtain all information MWG needs prior to their deliberations to make an informed decision on the request. Please use this form if possible.

The preferred method of request transmittal is via e-mail. Please send requests and attachments to:

JSC-ARES-MeteoriteRequest@nasa.gov Type **MWG Request** in the e-mail subject line. Please note that the form has signature blocks. The signature blocks should only be used if the form is sent via Fax or mail.

Each request should accurately refer to meteorite samples by their respective identification numbers and should provide detailed scientific justification for proposed research. Specific requirements for samples, such as sizes or weights, particular locations (if applicable) within individual specimens, or special handling or shipping procedures should be explained in each request. Some meteorites are small, of rare type, or are considered special because of unusual properties. Therefore, it is very important that all requests specify both the optimum amount of material needed for the study and the minimum amount of material that can be used. Requests for thin sections that will be used in destructive procedures such as ion probe, laser ablation, etch, or repolishing must be stated explicitly.

Consortium requests should list the members in the consortium. All necessary information should be typed on the electronic form, although informative attachments (reprints of publication that explain rationale, flow diagrams for analyses, etc.) are welcome.

Antarctic Meteorite Laboratory Contact Numbers

Please submit request to: JSC-ARES-MeteoriteRequest@nasa.gov

Kevin Righter Curator Mail code X12 NASA Johnson Space Center Houston, Texas 77058 (281) 483-5125 kevin.righter-1@nasa.gov

Cecilia Satterwhite Lab Manager/MWG Secretary Mail code X12 NASA Johnson Space Center Houston, Texas 77058 (281) 483-6776 cecilia.e.satterwhite@nasa.gov

FAX: 281-483-5347

Meteorites On-Line_

Several meteorite web sites are available to provide information on meteorites from Antarctica and elsewhere in the world. Some specialize in information on martian meteorites and on possible life on Mars. Here is a general listing of ones we have found. We have not included sites focused on selling meteorites even though some of them have general information. Please contribute information on other sites so we can update the list.

http://curator.jsc.nasa.gov/antmet/

http://caslabs.case.edu/ansmet/

http://mineralsciences.si.edu/

tions/meteorites-collection.html

http://www.psrd.hawaii.edu/index.html

http://www.meteoriticalsociety.org/

https://www.meteorite-times.com/

http://www.geochemsoc.org

http://meteorites.pdx.edu/

http://www4.nau.edu/meteorite/

http://www.lpi.usra.edu

http://www.nipr.ac.jp/

http://curator.jsc.nasa.gov/antmet/hed/

http://curator.jsc.nasa.gov/antmet/lmc/

http://curator.jsc.nasa.gov/antmet/mmc/

http://www.lpi.usra.edu/meteor/metbull.php

http://www.mna.it/collezioni/catalogo-meteoriti-sede-di-siena

http://www.nhm.ac.uk/our-science/collections/mineralogy-collec

http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1945-5100

http://meteorites.wustl.edu/lunar/moon meteorites.htm

http://www.imca.cc/mars/martian-meteorites.htm

http://meteorites.wustl.edu/meteorwrongs/meteorwrongs.htm

JSC Curator, Antarctic meteorites JSC Curator, HED Compendium JSC Curator, Lunar Meteorite Compendium JSC Curator, Mars Meteorite Compendium ANSMET Smithsonian Institution Lunar Planetary Institute NIPR Antarctic meteorites Meteoritical Bulletin online Database Museo Nazionale dell'Antartide BMNH general meteorites

UHI planetary science discoveries Meteoritical Society Meteoritics and Planetary Science Meteorite Times Magazine Geochemical Society Washington Univ. Lunar Meteorite Washington Univ. "meteor-wrong" Portland State Univ. Meteorite Lab Northern Arizona University Martian Meteorites

Other Websites of Interest

OSIRIS-REx Mars Exploration Rovers Near Earth Asteroid Rendezvous Stardust Mission Genesis Mission ARES Astromaterials Curation http://osiris-rex.lpl.arizona.edu/ http://mars.jpl.nasa.gov http://marsrovers.jpl.nasa.gov/home/ http://near.jhuapl.edu/ http://stardust.jpl.nasa.gov http://genesismission.jpl.nasa.gov http://ares.jsc.nasa.gov/ http://curator.jsc.nasa.gov/