12006 Olivine Basalt 206.4 grams

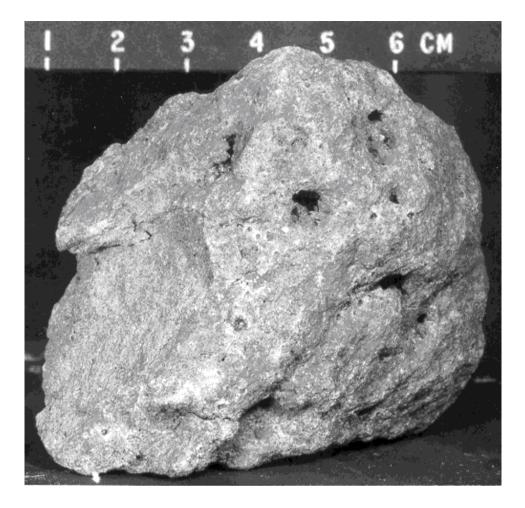
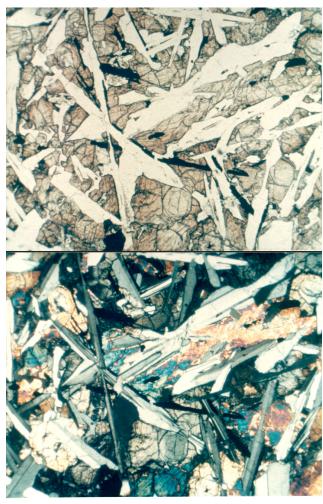


Figure 1: Photo of 12006. Note cavities (vugs) and zap pits. NASA #S69-62339. Scale is shown.


Introduction

James and Wright (1972) originally classified 12006 as a "subophitic feldspathic basalt", while Rhodes et al. (1977) and Neal et al. (1994) termed it an "olivine basalt" based on its chemical composition.

According to Hörz and Hartung (1971), rock 12006 displayed various micrometeorite crater densities on all surfaces, indicating multiple orientations during its history on the lunar surface. This basalt also has several cavities or "vugs" (figure 1).

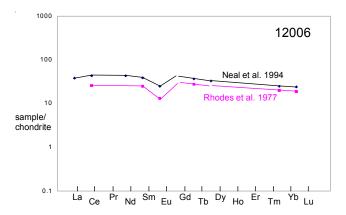
Mineralogical Mode for 12006 Neal et

	Neal et
	al. 1994
Olivine	22.6
Pyroxene	28.7
Plagioclase	43.4
Ilmenite	1.1
Chromite +Usp	3.4
Mesostasis	0.5

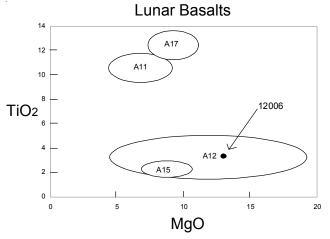
Figure 2: Texture of lunar basalt 12006. Photomicrographs S70-16788-789. Field of view is 2.2 mm. Lower photo is with crossed-nicols.

Petrography

For some reason, 12006 has not been well studied (although there are several thin sections). The texture is that of a medium-grained subophitic basalt (figure 2). According to Neal et al. (1994), this basalt has a high proportion of plagioclase (43%).


Chemistry

The REE content determined by Neal et al. (1994) did not agree with that of Rhodes et al. (1977) (table 1, figure 3). Neal et al. also found relatively high Na₂O.


Radiogenic age dating

This sample has not been dated (although it was allocated to Wasserburg).

The main mass, 12006,1 is on public display in Japan (figure 5).

Figure 3: Normalized rare-earth-element diagram for 12006.

Figure 4: Composition of 12006 compared with other lunar basalts.

	List	of	Photo) #s
--	------	----	-------	------

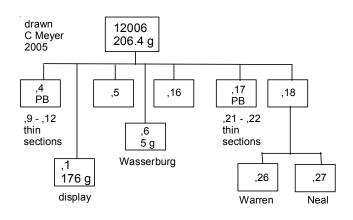

S70-16788-789	TS
S70-49155-158	TS
S70-49957-958	TS
S76-27137-143	color mug
S86-38616-618	
S90-33265-266	

Table 1. Chemical composition of 12006.

reference	Neal 94	Rhodes77			
weight SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum	.238 g 3.2 10.6 20.8 0.258 12.8 9.8 0.409 0.075	(a) (a) (a) (a) (a) (a) (a)	44.23 2.59 7.67 20.94 0.29 14.67 8.13 0.2 0.05 0.05 0.06	(c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	
Sc ppm V Cr Co Ni Cu Zn Ga Ge ppb As Se Rb	47.2 172 3890 45.2 70	(a) (a) (a) (a)	40.1 6250 60 110	(a) (a) (a) (a)	
Sr Y Zr Nb Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb	104	(a)	89 31 97 6.4	(c) (c) (c) (c)	
Cs ppm Ba La Ce	117 9 26.3	(a) (a) (a)	56 15.7	(b) (a)	
Pr Nd Sm Eu Gd	19.6 5.7 1.42	(a) (a) (a)	3.77 0.72	(a) (a)	
Tb Dy Ho Er	1.35 8.1	(a) (a)	1.02	(a)	
Tm Yb Lu Hf Ta W ppb Re ppb Os ppb Ir ppb Pt ppb Au ppb	4.1 0.59 3.8 0.56	(a) (a) (a) (a)	3.3 0.47 3	(a) (a) (a)	
Th ppm U ppm	0.74	(a)			
technique (a) INAA, (b) IDMS, (c) XRF					

Figure 5: 12006,1 in display mounting on loan to Japan. NASA photo # S90-33266.

References for 12006

Hörz F. and Hartung J.B. (1971c) The lunar-surface orientation of some Apollo 12 rocks. *Proc.* 2nd *Lunar Planet. Sci.* 2629-2638.

James O.B. and Wright T.L. (1972) Apollo 11 and 12 mare basalts and gabbros: Classification, compositional variations and possible petrogenetic relations. *Geol. Soc. Am. Bull.* **83**, 2357-2382.

Neal C.R., Hacker M.D., Snyder G.A., Taylor L.A., Liu Y.-G. and Schmitt R.A. (1994a) Basalt generation at the Apollo 12 site, Part 1: New data, classification and re-evaluation. *Meteoritics* **29**, 334-348.

Neal C.R., Hacker M.D., Snyder G.A., Taylor L.A., Liu Y.-G. and Schmitt R.A. (1994b) Basalt generation at the Apollo 12 site, Part 2: Source heterogeneity, multiple melts and crustal contamination. *Meteoritics* **29**, 349-361.

Papike J.J., Hodges F.N., Bence A.E., Cameron M. and Rhodes J.M. (1976) Mare basalts: Crystal chemistry, mineralogy and petrology. *Rev. Geophys. Space Phys.* 14, 475-540.

Rhodes J.M., Blanchard D.P., Dungan M.A., Brannon J.C., and Rodgers K.V. (1977) Chemistry of Apollo 12 mare basalts: Magma types and fractionation processes. *Proc.* 8th *Lunar Sci. Conf.* 1305-1338.