15010 - 15011 Double Drive Tube Station 9A

Figure 1: Location of 15011/10, with Hadley Rille in background (~ 1 km away!). Perfect weather. AS15-82-11159

Introduction

Lunar core 15011/10 was collected near the edge of the Hadley Rille (figure 1). Surface soil samples 15531 and rake sample 15600 should be compared with the top of 15011. No chemistry is available.

The original observations obtained during dissection are recorded in Newsletters #18 and 24

Figure 2: Maturity index along 15011/15010 double drive tube (Bogard et al 1981).

Petrography

Papike et al. (1982) gives an *indepth* summary of the results obtained by the study of 15011/10, comparing it with the deep drill core collected some distance away. The maturity (I_s/FeO) decreases with depth (figure 2). McKay et al. (1980) gives the mode and average grain size analysis which increases with depth (figure 3). Walker and Papike (1981) and Griffiths et al. (1981) carefully determined the modal mineralogy.

Mineralogical Mode for 15010								
From McKay et al. 1980								
depth	28 cm	34cm	40.5cm	46 cm	48 cm	54.5cm		
Agglutinate	32.1%	26.7	29.2	26.2	21.9	20.6		
Mare Basalt	12.5	13.3	12.1	15.5	12	11.4		
KREEP Basalt	0.4	0.9	0.3	0.5	1.7	1.8		
Breccia	7.5	7.8	8.3	8.9	7.8	11.3		
Plagioclase	8.5	7.7	7.2	7.9	7.2	8.8		
Pyroxene	22.5	29.9	26.8	27.3	30.8	27.1		
Olivine	1.8	1.7	2.6	2.3	2.6	2.3		
Ilmenite								
Glass other	9.8	9.5	9.8	8.9	8.4	10.4		

Figure 3: Agglutinate content, mineral fragments and average grain size as function of depth in 15011/10 double drive tube (Griffiths et al. 1981).

Two notable features of core 15011/10 are: 1) at a depth of 41 cm there was an 8 mm diameter clod of yellow glass (figures 5 and 6) and 2) at about the 50 cm level, there was a 44 gram chunk of mare basalt (15010,3115)!

Chemistry

Blanchard received samples along the core, but no data was published. Presumably the top portion of the core would be the same as surface soils 15531 or 15601.

The composition of the yellow glass clod found near the bottom of the core has been determined by Delano et al. (1982) and by Ebihara et al. (1992) (table 1). It is KREEP (figure 4).

Cosmogenic isotopes and exposure ages

Fruchter et al. (1981) determined the depth dependence of ²⁶Al (figure 9) and Nishiizumi et al. (1983) determined ⁵³Mn (figure 10). Below about 10 cm the ²⁶Al and ⁵³Mn data agree with the Reedy-Arnold model for cosmic-ray activation of an in-place core. However the excess activity in the top 10 cm means that previously irradiated material has been added in the past 10 m.y.

Other Studies

Bogard et al. (1980) determined the rare gas content of sample along the whole core (figure 8).

Figure 4: Normalized rare-earth-element diagram for yellow glass found in 15010 (Delano et al. 1982).

Figure 5: Photo of 15010,3189 before analysis. S79-32007.

Blandford et al. (1980) and Crozaz (1980) determined the density of solar flare tracks (figure 11).

Processing

Double drive tube 15011/10 was driven all the way in (figure 14). Some material found on top of the core "keeper" was found to have high ⁵³Mn (see Nishiizumi et al. 1983).

Allton (1979) performed the dissection of the core; reported in Newsletters #18 and 24 (figures 12 and 13).

Figure 6: Photomicrograph of thin section of 15010,3189 (S79-33396 an 33401). Scale about 2 mm.

Ebihara92 reference Delano82 weight SiO2 % TiO2 4.2 (a) AI2O3 9.5 (a) FeO 18.9 (a) 0.24 MnO (b) MgO 9.3 (a) CaO 9.5 (a) Na2O 0.32 (a) K2O 0.22 (a) P2O5 0.22 (a) S % sum Sc ppm 39 (b) V 99 (b) Cr 2121 (a) Со 41 (b) 110 91.9 Ni (C) Cu Zn 0.12 0.12 (C) Ga Ge ppb As Se 17 24 (C) Rb 6.08 4.81 (C) Sr Ŷ Zr 460 (b) Nb Мо Ru Rh Pd ppb 21 1.9 (C) Ag ppb 0.8 0.16 (c) Cd ppb 45 4.9 (C) In ppb 1.7 0.73 (C) Sn ppb 2.5 Sb ppb 1.3 (C) Te ppb 39 (c) 2 0.151 1.66 Cs ppm (C) 410 (b) Ва La 48.3 (b) (b) Ce 106 Pr Nd 74 (b) Sm 20.3 (b) (b) Eu 1.61 Gd 4.06 (b) Tb Dy 27.6 (b) Ho Er Tm Yb 15.6 (b) Lu 2.35 (b) Ηf 12.6 (b) Та 2.3 (b) W ppb Re ppb 0.104 0.052 (C) Os ppb 1.45 1.81 (C) Ir ppb (b) 1.48 (c) 1.21 4 Pt ppb (b) 0.27 0.035 Au ppb 26 (c) Th ppm 8.3 (b) (b) 2.48 2.13 (C) U ppm 3 technique: (a) elec. Probe, (b) INAA, (c) RNAA

Table 1. Composition of 15010 yellow glass.

Figure 8: Rare gas content in 15011/10 (Bogard et al. 1980).

Figure 9: 26Al as function of depth in double drive tube 15011/15010 taken near Hadley Rill (Fruchter et al. 1981).

Figure 10: 54Mn as function of depth in 15011 (Nishiizumi et al. 1982).

Figure 11: Tracks in 15010 (Crozaz 1980).

top

middle

middle

Lunar Sample Compendium C Meyer 2010

Lunar Sample Compendium C Meyer 2010

DRIVE TUBE 15011

LOCATION OF SAMPLES, THIRD DISSECTION (STANDARD)

Lithologic Symbols

Basalt

Figure 12: Dissection of top portion of 15011/15010 douber drive tube (Nagle 1979).

*Measured after extrusion

DRIVE TUBE 15010 LOCATION OF SAMPLES, FOURTH DISSECTION (STANDARD)

				Interval	Samples	[nterva]	Samples	Special	Samples			
				Fine (< 1 mm)		Coarse (> 1 mm) Fraction						
Stratigraphic Unit	Cm Depth	Columnar Section	Cm Depth Below Lunar Surface*	Sample No.	Sample Wt.	Sample No.	Sample Wt,	Sample No.	Sample Wt.	Sample Type	Sample Interval	
			26.9	,3000	3.029	,3001	0.206				25.0.02.4	
	Ĩ	100	_ 27.4	,3002	2.844	,3003	0.134	,3004	0.209	Basalt	26.9 - 27.4	
			27.9 -	.3005	2.716	, 3008	0.182					
			- 28.4 -	,3009	3.444	.3010	0.178					
	Ē	100	29.4	,3011	2.509	,3012	0.255					
	30.0 -	B C	29.9	,3013	2.623	, 3014	0.080					
	30.0 -	\square		,3015	2.973	.3018	0,151		·			
			- 30.9	,3019	2.956	,3020	0.140					
			L 31.9 -	.3021	3.307	,3022	0.370	,3023	0.018	soil	31.5 - 31.7	
			32.4	,3024	2.790	,3025	0,142					
	-		32.9	3026	2.748	.3027	0.306					
		0	33.9	,3030	2.580	,3031	0.141					
			L 34.4 _	.3032	2.947 1.	,3033	0.109					
	35.0	12	34.9 _	,3034	2.403	,3035	0.172	2020	0.224		34 0 16 4	
		120	35.4	,3036	2.944	, 3037	0.140	, 3038	2.622	Basalt	34.9 - 36.4	
			35.9 -	,3040	2,605	,3041	0.204	1,3044	0.013	soil	36.1 - 36.4	
		17x	36.9	,3046	2.863	, 3047	0.170	, 3045	0.152	soil	35.9 - 36.9	
	1	1 and	37.4	,3048	2.754	,3049	0.279		0.500	Baralt	37.0 . 27.9	
		ABO	_ 37.9 _	,3050	2.712	,3051	0.577	, 3052	0.526	basarc	57.0 - 37.6	
		1200		3055	3,203	,3056	0.252	, 3057	1,758	SoBx	37.4 - 39.1	
			- 38.9 -	,3058	2.771	,305	0.412	,3060	0.552	Basalt	38.5 - 39.7	
4		1-0	39.9	,3061	2.312	,3062	0,230					
	40.0	0 0	40.4	,3063	2.776	,3064	0.458					
		The has	40.9 -	.3065	3.138	,3066	0,172					
		1105	41.4 -	,3059	2.453	,3070	0.234	<u> </u>				
		200	41.9	,3073	2.706	,3074	0.410	.3077	1.841	Basalt	41.7 - 43.1	
		my to	42.9	,3075	2.887	,3076	0.082	,3080	0.246	soil	42.9 - 43.4	
		()	_ 43.4	,3078	2.741	,3079	0.346	,3089	0,864	Basalt	44.8 - 46.1	
		J C	43.9 -	,3081	3.121	,3082	0.326	3000	0 125	Vioil	41.0 - 41.8 4	
		$\sim 0^{\circ}$	44.4 -	,3085	3.294	,3086	0.386	,3090	0,038	GSoil	41.0 - 41.8	
	45.0 _	12pr	45.4	.3087	3.287	,3088	0.479	,3092	0,038	YSoil	41.0 - 41.8	
7			45.9	,3093	3.254	,3094	0.153	,3137	0,066	Soil	41.0 - 41.8 🗣	
2	1		- 46.4 -	,3095	2,991	,30%	0,280	,3138	0.14	soil	41.0 - 41.8	
			- 46.9 -	,3097	2.903	,3098	0.440	.3139	0,08	YFrag	41.0 - 41.8 4	
			- 47.4 -	.3101	3.213	,3102	0.314	,3140	0.23	GFrag	41.0 - 41.8	
			47.9 -	,3103	2.932	,3104	0.466	.3143	0.03	GFrag	41.0 - 41.8	
	$\left(\begin{array}{c} \end{array} \right)$	48,9 -	,3105	2.780	,3106	0,523	,3144	0,00	Frag	41.0 - 41.8		
	$\neg a \land$	- 49.4 -	,3107	2.353	,3108	0,200						
2	50.0 -	A	49.9 -	,3109	1.984	,3110	0.090	,3111	0.35	Basalt	42.9 - 50.0	
-		RA/	- 50.4 -	.3112	1.958	,3117	0.328	,3115	44.05	Basalt	48.3 - 53.1	
			50.9 -	,3118	2.303	,3119	0.194				• • • • • • • • • • • • • • • • • • •	
		Ros 2	- 51.4 -	.3120	2.135	,3121	0.344					
			- 52.4 -	,3122	3.479	,3123	0.546	,3124	0.87	B SoBx	51.5 - 52.3	
			- 52.9 -	3125	2.930	,3120	0.415	,3127	0.53	SoBx	52 5 - 53 7	
			- 53.4 -	,3131	3.143	,3132	0.644	1				
		000	T = 53.9 =	,3133	2.661	,3134	0.693					
	55.0-	800	-54.9 - 55.3	,3135	4.615	,3136	0.732					
		Lithologic Sy	mbols									
			Lange of the second	E IIO								
			Clinic main Co. 4 20040 -									
			之教:	12							M4.14-J11	
		Basalt	Soil Breccia	a Glas	22	Anorth	ositic					
				Breccia					Figure 13: Dissection of bottom			

*Heasured after extrusion

Lunar Sample Compendium C Meyer 2010

15010-8

portion of 15011/15010 double drive tube (Nagle 1979).

Figure 14: Double drive tube 15011/15010 was hammered in all the way ! AS15-82-11162.

Transcript 15010

CDR But you know, I don't know, a double core – we may find ourselves driving into bedrock if we're not careful.

LMP Yes, I'm afraid of that.

CDR I bet I can do a good one right there. And, I see some white-colored albedo near the - -

- --

LMP Pushing. I'll push a little more.

CDR Yes, Got a half a tube – oooh. Good, nice. You got three-quarters?

LMP Yes. It feels like it's – hung up on a rock.

CDR Okay. I got the picture. Go ahead and hammer. Rock huh? No, it's going in. You're getting it. There's a full one. Have at it. You are getting a couple inches a stroke. Very nice. Ok. There's one and a half. Good. Doing good. Notice when you're hitting it the whole ground around it raises up - for about an inch anyway from the core. You've got about three more smacks, and you ought to have it all the way in. Hey, good. I'll give you a double core on that. Good show. Ok, I got the picture. Ok. I got the cap. Go ahead and pull back.

LMP Yes. Yes, we went right through a rock. No wonder it was hard pounding. Got the rock right in the bottom of the -. I'm not going to get too good a seal because – a portion of the rock – you know.

References for 15011 and 15010.

Allton J. (1978) Dissection Report 15010. Lunar News 18.

Allton J. (1979) Dissection Reports 15011/10. Lunar News 24.

Blandford G., Blandford J. and Hawkins J. (1980) Particle tracks in lunar core 15010 (abs). *Lunar Planet. Sci.* XI, 88-90. LPI

Bogard D.D., Morris R.V., Hirsch W.C.. and Lauer H.V. (1980) Depositional and irradiational history of the Hadley Rille core 15010/11. *Proc. 11th Lunar Planet. Sci. Conf.* 1511-1529.

Butler P. (1971) Lunar Sample Catalog, Apollo 15. Curators' Office, MSC 03209

Coch N.K. (1976) Radiographic enhancement analysis of sedimentary structures and depositional history in Apollo 15 core 15011. *Proc.* 7th *Lunar Sci. Conf.* 113-122.

Crozaz G. (1980) Irradiation history of the lunar regolith at the Apollo 14, 15 and 17 sites: Additional insights. *Proc. 11th Lunar Planet. Sci. Conf.* 1453-1462.

Delano J.W., Lindsley D.H., Ma M-S. and Schmitt R.A. (1982) The Apollo 15 yellow impact glasses: Chemistry, petrology, and exotic origin. *Proc.* 13th Lunar Planet. Sci. Conf. A159-170.

Ebihara M., Wolf R., Warren P.H. and Anders E. (1992) Trace elements in 59 mostly highland Moon rocks. *Proc.* 22nd Lunar Planet. Sci. Conf. 417-426. Lunar Planetary Institute, Houston

Fruchter J.S., Reeves J.H., Evans J.C. and Perkins R.W. (1981) Studies of lunar regolith dynamics using measurements of cosmogenic radionuclides in lunar rocks, soils and cores. *Proc. 12th Lunar Planet. Sci. Conf.* 567-575.

Graf J.C. (1993) Lunar Soils Grain Size Catalog. NASA Reference Pub. 1265, March 1993

Griffiths S.A., Basu A., McKay D.S. and Nace G-A. (1981) Petrology of Apollo 15 station 9A surface and drive tube soils. *Proc. 12th Lunar Sci. Conf.* 475-484.

Heiken G.H. (1974) A catalog of lunar soils. JSC Curator

Heiken G.H. (1975) Petrology of lunar soils. *Rev. Geophys. Space Phys.* **13**, 567-587.

LSPET (1972a) The Apollo 15 lunar samples: A preliminary description. *Science* **175**, 363-375.

LSPET (1972b) Preliminary examination of lunar samples. Apollo 15 Preliminary Science Report. NASA SP-289, 6-1-6-28.

McKay D.S., Basu A. and Nace G-A. (1980) Lunar core 15010/11: Grain size, petrology and implications for regolith dynamics. *Proc. 11th Lunar Planet. Sci. Conf.* 1531-1550.

Morris R.V. (1978) The surface exposure (maturity) of lunar soils: Some concepts and Is/FeO compilation. Proc. 9th Lunar Planet . Sci. Conf. 2287-2298.

Morris R.V., Score R., Dardano C. and Heiken G. (1983) Handbook of Lunar Soils. JSC 19069

Nishiizumi K., Murrell M.T. and Arnold J.R. (1983) ⁵³Mn profiles in four Apollo surface cores. *Proc. 14th Lunar Planet. Sci. Conf.* in J. Geophys. Res. 88, B211-B219.

Papike J.J., Simon S.B. and Laul J.C. (1982) The lunar regolith: Chemistry, Mineralogy and Petrology. *Rev. Geophys. Space Phys.* **20**, 761-826.

Swann G.A., Hait M.H., Schaber G.C., Freeman V.L., Ulrich G.E., Wolfe E.W., Reed V.S. and Sutton R.L. (1971b) Preliminary description of Apollo 15 sample environments. U.S.G.S. Interagency report: 36. pp219 with maps

Swann G.A., Bailey N.G., Batson R.M., Freeman V.L., Hait M.H., Head J.W., Holt H.E., Howard K.A., Irwin J.B., Larson K.B., Muehlberger W.R., Reed V.S., Rennilson J.J., Schaber G.G., Scott D.R., Silver L.T., Sutton R.L., Ulrich G.E., Wilshire H.G. and Wolfe E.W. (1972) 5. Preliminary Geologic Investigation of the Apollo 15 landing site. In Apollo 15 Preliminary Science Rpt. NASA SP-289. pages 5-1-112.

Walker R.J. and Papike J.J. (1981) The Apollo 15 regolith: Comparative petrology of drive tube 15010/15011 and drill core section 15003. *Proc. 12th Lunar Planet. Sci. Conf.* 485-508..