Lunar Sample Compendium

Introduction

Introduction to the Compendium
The purpose of the Lunar Sample Compendium is to inform scientists, students, astronauts and the public about the various lunar samples that have been returned from the moon, mostly by the Apollo Program. This Compendium is organized rock by rock in the manner of a catalog, but is not as comprehensive, nor as complete, as the various lunar sample catalogs that are available. Likewise, this Compendium does not attempt to duplicate the various excellent books and reviews on the subject of lunar samples (Cadogen 1981, Heiken et al. 1991, Papike et al. 1998, Warren 2003, Eugster 2003). However, it is thought that an online Compendium, such as this, will prove useful to scientists proposing to study individual lunar samples and should help provide backup information for lunar sample displays.

This Compendium allows easy access to the scientific literature by briefly summarizing the significant findings of each rock along with the documentation of where the detailed scientific data are to be found. Only basic information of each sample is presented, although reference to where to find advanced studies is given. It is thought that an advantage of an online Compendium is that sections of it could be expanded, corrected, up-dated etc., should someone choose. Please note that there is a rather comprehensive reference list included.
A description of each sample is given, along with thin section photomicrographs, where they are available, showing the internal texture. Tables of modal mineralogy and chemical data are included. Trace element data are plotted and isochrons are reproduced. In some cases, a photo of the sample on the lunar surface is included. An elementary introduction to the petrography of lunar samples is available online at: http://www-curator.jsc.nasa.gov/lunar/letss/contents.htm

Another excellent web site with a broad perspective is: http://epsc.wustl.edu/admin/resources/moon_meteorites.html

The Apollo Program

The Apollo Program was remarkably successful. Between 1969 and 1972, twelve men walked on the surface of the moon and carefully collected 2,196 documented samples of soils and rocks during about 80 hours of exploration. Altogether this collection of samples weighs 382 kilograms. Only a small portion has been consumed during analysis (as described herein). A large number are on public display. In general, the largest portion of each sample remains available for future studies, although some important samples are nearly exhausted.

The Apollo 11 Lander has a plaque proclaiming “We came in Peace, for all Mankind” (figure 11). In this spirit, the Apollo samples have been widely distributed, to all qualified investigators, in many laboratories in many countries. The guiding principle was to learn as much as possible from this valuable set of samples.

The Apollo lunar samples were collected by the astronauts at great personal risk. Actually, twenty-four astronauts traveled to the moon and back, during nine trips (three astronauts went twice). Some missions, like Apollo 8, did not land. The explosion of the fuel cell during the Apollo 13 mission emphasized the dangers of space travel (as in, “Houston, we have a problem”). There was also the unseen danger of radiation from potentially fatal solar flares (Reedy 1977; Rancitelli et al. 1974a). Today, watching films of the astronauts working on the lunar surface, it is hard to realize that they were working in a complete
vacuum, where any tear in the space suit, or micrometeorite impact, would have been catastrophic. Some of the tasks, such as the withdrawal of the Apollo 15 core, were extremely difficult to accomplish. On the last three missions, there was the potential need for a long walk back to the Lunar Module in case the rover broke down. For geoscientists, the legacy of Apollo is a complicated task to unravel the secrets hidden in the collection of samples obtained during this extraordinary adventure.

Samples from the early missions were returned in sealed rock boxes; however, other samples were exposed to the atmosphere of the Lunar Module, the Command Module and even (briefly) the atmosphere of the equatorial Pacific Ocean. However, once the samples reached the curatorial laboratory in Houston, they were stored and processed in pure nitrogen. Originally they were quarantined to make sure there were no extraterrestrial life forms, and oriented by means of artificial lighting to match shadow patterns on the documentation photos taken by the astronauts. Indeed, no life forms, organic molecules nor water was found; so the quarantine was discontinued.

Immediately after each of the six Apollo mission, the samples were examined by an international team of investigators in what was call PET (for preliminary examination team): http://www.curator.jsc.nasa.gov/lunar/PETScience.doc

This led to the set of initial lunar sample information catalogs (now made available at the Curator’s web site). Some samples were immediately sent to the radiation counting laboratory to determine the effects of cosmic ray and solar flare exposure. As the years have gone by, this collection has been re-catalogued in various publications; but the lunar sample literature is the best source of information. Most of this literature is published, in peer-review manner, in the Proceedings of the Lunar and Planetary Science Conferences (1970-1992). However, some of this literature is spread out in various scientific journals and some of it is only published in abstracts which are getting harder and harder to access (ask the LPI).

The Luna Program

The USSR was successful in returning lunar samples automatically and operating large Lunakods (automated rovers) on the surface. The Luna samples were collected as core tubes and returned by wrapping the core liners around a drum. They were also studied intensively by international efforts and it was learned...
that modern analytical techniques could extract a lot of information from small samples. Luna 16 collected samples from the eastern part of Mare Tranquilitatis, Luna 20 from the highlands and Luna 24 from Mare Crisium (Vinogradov 1971, 1973, Barsukov 1977). These samples were also distributed widely.

The Consortium Approach
Some lunar samples were studied in “consortium mode”. The allocation committees (LSAPT, LAPST and CAPTEM) often encouraged consortium studies and the consortium approach still remains the best way to study a sample, when it involves close cooperation of scientists with different backgrounds. James and Blanchard (1976) state: “Most lunar breccias are extremely complex rocks. They consist of aggregates of materials broken, melted, transported and recombined by impact processes. Each fragment has its own unique history. To understand the origin of such a rock and its constituents requires data from many disciplines and a coordinated approach to obtaining this data. Coordinated study insures that the various types of data can be correlated (a problem in such heterogeneous rocks), and that the investigators can relate their results to a general understanding of rock genesis and history. This is the rationale that underlies the “consortium” approach to studies of lunar breccias.”

Geologic History of the Moon
The US Geologic Survey was tasked with planning and supervision of the field studies and their reports are extremely useful in providing geologic context of the samples collected (see Wolfe et al. 1981, Swann et al. 1977 and Ulrich et al. 1981). The best reference for the geological history of the moon remains: http://cps.earth.northwestern.edu/GHM/. However, as new missions to the Moon have been flown, this comprehensive study may now need some revision.

In 1991, the science community tried to prepare for future lunar mission by summarizing what had been learned in a book called “The Lunar Sourcebook: A users guide to the Moon”. http://www.lpi.usra.edu/lunar_sourcebook/ Stöffler and Ryder (2001) reviewed the stratigraphy of lunar geologic units and summarized the age dating that has been accomplished. Nyquist et al. (2001) reviewed the ages and discussed the initial isotopic ratios. Gillis et al. (2004) provide an excellent review of recent chemical mapping of the moon.

Briefly, the grand sampling strategy for Apollo was to try to understand the interior of the moon by studying the basalt flows in the maria, and the ejecta blankets of really large basins (Imbrium, Serenitatis) at different distances. The basalt flows represent liquids derived by melting the interior of the moon; thus their composition and ages tell us about the melting and thermal history of the lunar interior. The ejecta blankets provide shocked materials of the original crust. Cratering Mechanics predicts that samples from different radial distance from the basin rim will provide materials from different depths beneath the lunar surface.

Already, in 1893, Gilbert saw that distinctive textured terrain extended out from the Imbrium Basin. Just prior to Apollo, the Lunar Orbiter returned pictures of another large basin (Orientale) with distal ejecta with the same general pattern (figure 1), confirming Gilbert’s interpretation for Imbrium (Head 1976a). Figure 2 shows Imbrium ejecta draping over the ancient crater Fra Mauro; hence the name Fra Mauro Formation. This, then, was the target for Apollo 14 where numerous breccia samples were indeed found. The location of Apollo 15 was intended to sample the Apennine Front near the inner rim of the Imbrium Basin, where deeper material should be found. Apollo 17 was from the edge...
Figure 5: Geologic setting of impact breccias in a hypothetical giant lunar crater (a la Stoffler). The shock wave granulates the underlying, preexisting bedrock producing monomict breccias with glass veins. Dimict breccias form if the veins are filled with impact melt. Fragmental breccia occurs beyond the crater rim. Crystalline matrix breccia forms if the crater is large enough and the hot fallback debris forms a melt sheet (inside or outside of crater).

There are a few unique features in lunar rocks; plagioclase is almost pure anorthite, maskelynite is common, rare ternary feldspar (Na, K and Ca) is found. Pyroxene has a wide range of composition, somewhat characteristic of each rock type. New minerals include armalcolite, tranquillite, pyroxferroite and yttr.betafite. Akaganeite (FeOOH) was found on one Apollo 16 breccia. ZnS coatings were found on volcanic glass beads.

The surface of lunar rock that were exposed to space have a thin brown patina of glass splashes and glass-lined micrometeorite craters (zap pits). Figure 2 in the section on 12054 shows what the very surface of the moon looks like. Solar flare tracks are abundant beneath these surfaces. Depth profiles of cosmic ray induced radio-nuclides extend to depths of 10 cm.

Lunar Mineralogy

The mineralogy of lunar samples is rather simple, with only a few major minerals (plagioclase, pyroxene, olivine and ilmenite). The rocks formed in a completely dry and very reducing environment, such that the iron is mostly in a plus two oxidation state with minor metallic iron. Grain boundaries between minerals are remarkably distinct, with no alteration products. Glass is present in the mesostasis. Minerals that might have been added by meteorite bombardment have generally been vaporized (with minor exception, see Joy et al. 2012).

There are a few unique features in lunar rocks; plagioclase is almost pure anorthite, maskelynite is common, rare ternary feldspar (Na, K and Ca) is found. Pyroxene has a wide range of composition, somewhat characteristic of each rock type. New minerals include armalcolite, tranquillite, pyroxferroite and yttr.betafite. Akaganeite (FeOOH) was found on one Apollo 16 breccia. ZnS coatings were found on volcanic glass beads.

The surface of lunar rock that were exposed to space have a thin brown patina of glass splashes and glass-lined micrometeorite craters (zap pits). Figure 2 in the section on 12054 shows what the very surface of the moon looks like. Solar flare tracks are abundant beneath these surfaces. Depth profiles of cosmic ray induced radio-nuclides extend to depths of 10 cm.

Lunar Mineralogy

The mineralogy of lunar samples is rather simple, with only a few major minerals (plagioclase, pyroxene, olivine and ilmenite). The rocks formed in a completely dry and very reducing environment, such that the iron is mostly in a plus two oxidation state with minor metallic iron. Grain boundaries between minerals are remarkably distinct, with no alteration products. Glass is present in the mesostasis. Minerals that might have been added by meteorite bombardment have generally been vaporized (with minor exception, see Joy et al. 2012).

The landing sites for Apollo missions were limited to mildly-cratered, flat spots, which generally turned out to be lava flows. The basalts from these lava flows were sampled in abundance. Although fresh in appearance, they measured to be quite old – 3.2 to 3.9 b.y. There are 134 samples of basalt greater than 40 grams, 42 greater than 500 grams, 24 greater than one kilogram, 11 greater than two kilograms and the largest 9.6 kilograms (15555). They have textures of a crystallized liquid – ranging from variolitic to subophitic to equigranular. Most are fine-grained with an average about 0.5 mm, but some have phenocrysts over one cm.
Figure 6: Summary of all lunar zircon ages determined by the SHRIMP I ion microprobe method (Meyer et al. 1996). This relative probability curve was generated by summing the gaussian curves representing each age determination and its analytical uncertainty. Zircons from K-rich lunar rocks are highlighted. The oldest zircon age measured was 4.42 b.y. (Nemchin et al. 2009). In any case, refractory zircons and some lunar samples have survived the apparent cataclysmic basin-forming events at 3.9-4.0 b.y.

Most of the lunar basalts are Fe-rich, often Ti-rich, and have abundant opaque minerals. Some are very vesicular, with interconnecting vugs and vesicles (15016). A few lunar basalts are greatly enriched in rare-earth-elements (14310, 15382, 15386). All true basalts were found to have very low siderophile (Ni, Ir and Au) content.

The majority of rocks on the lunar surface are breccias. Most lunar breccias are the lithified aggregates of clastic debris and melt generated by meteorite bombardment in the ancient lunar highlands (3.9 b.y. ago). There are 59 lunar breccias larger than 500 grams, 39 greater than one kilogram and 19 greater than two kilograms. Many of the breccia samples are ejecta from the giant basin-forming events. Others are interpreted as melt sheets from the fallback of hot ejecta into the large lunar basins (figure 5). Some have a fragmental matrix made up individual mineral fragments, while others have a crystalline matrix from slow cooling of initially molten matrix. A few lunar breccias are soil breccias containing glass beads and a component of solar wind. Most breccia samples are polymict, containing a wide variety of clasts, which are themselves breccias of an earlier generation. Key to the understanding of soils and breccias are measurement of otherwise trace element gold and iridium (which indicate the amount of admixed meteoritic material). Breccia clasts with low levels of gold or iridium are termed “pristine”, meaning they haven’t been contaminated by meteoritic materials and must be remnant pieces of the original lunar crust. Using trace siderophile and volatile element signatures, some scientists have even assigned breccias to specific lunar craters! (see Moon as a Target below)

An early discovery of lunar samples was that the lunar highlands must contain an abundance of plagioclase-rich material – termed ANT (for anorthositic, noritic and troctolitic). Scientist have found two major trends in these anothositic materials – some have a high Fe/Mg ratio and are termed ferroan anorthosites (15415, 60025), and the others are generally termed mg-gabbro norites, trending to alkali norites. These materials are
generally quite old, and probably represent the original crust of the moon, presumably formed after differentiation of an original, global magma ocean. One sample of dunite was returned (74215). Late-stage differentiation of the magma ocean presumably led to the rocks such as the quartz-mozodiorite in 15405, the sodic-ferrogabbro in 14306 and the “granite” in 14303, 72275 etc. However, zircons from these rocks indicate continuous magma activity from 4.4 to 3.9 b.y. (figure 6).

Glass
Glass is an important component in lunar samples, and has been studied extensively by many investigators. Glass occurs as mesostasis in basalts, as melt inclusions in minerals, as beads from volcanic eruptions, as agglutinates formed by meteorite bombardment of gas-rich soil and as splash on rock surfaces. Agglutinates are an odd characteristic of lunar soils and a measure of its maturity. They are fragment-laden-vesicular glass that is formed by meteorite bombardment and melting of solar-wind-enriched lunar soil. During agglutinate formation, solar-wind implanted hydrogen reacts with silicate glass, forming minute iron grains with strong magnetic properties (Housley et al. 1975). In addition, about 20 groups of clear glass beads prove to be of volcanic origin (Delano 1986). Two deposits of this material (orange glass in 74220 and green glass in 15425) have been studied extensively. Glass is also found in abundance splashed on the surface of rocks that were returned and even as glass objects (64455). Some of this glass may be from South Ray Crater. Some investigators have measured the compositions of thousands of glass fragments in the soil in the hope of discerning ‘rock types’. Ropy glass fragments, found in the soil at Apollo 12, were related to the crater Copernicus (Meyer et al. 1973). Other investigators attempted to date hundreds of glass objects in the hope of finding a pattern to the bombardment history of the Earth-Moon system (Culler et al. 2000).

The Regolith
As the moon is an airless planet, meteorites hit the surface at full force, creating craters large and small, fragmenting the lunar surface and forming what is known as the lunar regolith (figure 7). The bulk of the

Figure 7: Meter-size craters in the lunar regolith are capable of producing soil breccias like 15299. Fresh craters 10 m and larger are required to dig up hand specimens from the bedrock. NASA # AS12-47-6939.
regolith is a fine gray soil with a density of about 1.5 g/cm³, but the regolith also includes breccia and rock fragments from the local bedrock. About half the weight of a lunar soil is less than 60 to 80 microns in size. Calcalong Creek is a meteorite from the moon that nicely illustrates what the lunar regolith looks like (figure 8). Samples 15295-15299 are closely comparable.

Regolith samples included many soil samples, several drive tubes and three deep drill cores. It should be noted that the Russians automatically returned three short cores from three additional places on the moon. Meteorites from all over the moon are covered in a separate compendium by Kevin Righter (whose introduction is superior). But how would we know they were from the moon, if we didn’t have the Apollo samples?

The Moon as a Beam Stop
The moon also acts as a “beam stop” for high energy cosmic rays and solar flares which penetrate the surface materials causing nuclear reactions (Lal 1972). Cosmic rays and solar flares are primarily (>90%) high energy protons (Reedy 1987). The high-energy (~1 GeV) galactic-cosmic-ray particles produce a cascade of secondary particles, especially neutrons, that penetrate meters into rocks and soils. The relatively low-energy (~10 to 100 MeV) particles emitted from the sun (solar cosmic rays) are rapidly stopped in rock within a few cm. A few percent of cosmic rays are heavy ions (e.g. Fe) that cause radiation damage in minerals along their final track.

The neutron flux resulting from this cosmic ray interaction with the lunar surface produces measurable variation in the isotopic composition of elements that...
Figure 9: Major solar flare intensities and Apollo missions (from Rancitelle et al. 1974).

have large cross sections for neutrons (Gd, Mn etc.). Some isotopes are themselves radioactive and decay with time (e.g. 14C, 26Al, etc.) Lunar samples whose orientation was known from lunar photographs and matched with photographs in the laboratory have been carefully sawn to provide samples at different depths for these isotopic studies. These studies have, in turn, provided data for the models of the cosmic ray energy and flux over time.

Perhaps the most useful information obtained from a study of the cosmic-ray-produced nuclides is the measure they give of the length of exposure time at or near the lunar surface. When several samples from the rim of a young crater give similar exposure ages, we think we have learned the age of the crater! Reviews by Arvidson (1975), Eugster (2003) and others, summarize these studies.

In August 1972, between Apollo 16 and Apollo 17, a very intense solar flare induced high radioactivity in the surfaces of lunar sample (Keith et al. 1974a; Rancitelli et al. 1974a). Figure 9 shows the solar flare activity that occurred during the time frame of the Apollo missions.

Thus, it has proven important for these studies, to have knowledge of the lunar orientation of samples (Sutton 1981; Wolfe et al. 1981), and for exact depths of subsamples taken from within the rocks to obtain the depth profile of the radiation effects (61016, etc).

The Moon as a Target

Lunar basalts and samples least affected by meteorite bombardment are found to have very low contents of siderophile elements (generally Ni, Ir, Au, Re, Os) indicating that these elements were initially generally lacking (<0.1 ppb). Lunar rocks with low siderophile element contents have come to be called “pristine” (Warren and Wasson 1977). However, lunar soils, breccias and impact melt rocks are found to have relatively high (~10 ppb), and specific contents of these elements, which are generally considered to have been added by the meteorite impacts (figure 10). Indeed it was found that breccias and impact melts for each of the large basins had characteristic ratios of these meteoritic siderophiles (Morgan et al. 1974, 1977).

The Lunar Cataclysm

Many of the impact melt rocks returned from the highlands of the moon dated at about 3.9 b.y. This led to the hypothesis that there was a period of late bombardment of the moon by large objects that were stored somewhere in the Solar System for 500 m.y., before colliding with the moon (and the Earth) in a short period of time around 3.9 b.y. ago (Tera et al. 1974a; Ryder 1990). Most of the collection of rocks from the Apollo missions come from the areas around
Figure 10: Truncated, ternary, chemical diagram for trace meteoritic siderophiles Ir, Re and Au content of feldspathic highland rocks (from Janssens et al. 1978). It is thought that these groupings represent the chemical composition of individual basin-producing impactors.

Figure 11: Copy of plaque attached to ladder of Apollo 11 lander with “We came in peace - -

the big basins Imbrium, Serenitatis and Nectaris, but also samples from the Luna missions around Crisium, and among the meteorite collections, seem to have an abundance of ages grouped tightly around 3.9 b.y. (Cohen et al. 2001). This event may have also influenced the Earth, because few terrestrial materials (if any) are older than 3.9 b.y. An understanding, of sorts, has recently arisen, based on a dynamic model of a hypothetical “dance” of the giant planets (Gomes et al. 2005).

Nevertheless, numerous zircons and some few rock clasts have been dated to be older than this terminal cataclysm (e.g. Meyer et al. 1996; Norman et al. 2003; Nemchin et al. 2009).

Lunar Nomenclature
Admittedly confusing - such as it is! In this Compendium, rocks are simply referred to as they have been in the literature. Impact processes have greatly influenced lunar rocks samples such that terms like breccia, impact melt rock, agglutinate, regolith, etc. are important. At the time of the Apollo missions, we simply did not know what regolith breccias and impact melt rocks looked like!