

Volume 40, Number 1 February 2017

Curator's Comments

Kevin Righter, NASA-JSC

This newsletter reports 180 new meteorites from the 2012, 2013, and 2015 ANSMET seasons from Larkman Nunatak (LAR12), and the Miller Range (MIL13 and MIL15). Meteorites include 3 CK, 3 CM1, 15 CM2, 2 CV3, 1 CO3, 1 CR2 carbonaceous chondrite, 6 enstatite chondrites, 1 eucrite, 1 mesosiderite, and 1 ureilite.

With this newsletter, characterization and announcement of the 2012 (382 meteorites total) and 2013 (320 meteorites total) seasons are complete. The 2012 season collection is from GRA, GRO, GDR, LAR, PAT, SCO, and SZA and features large CO, CK, CR and CV chondrites (SZA 12430, SZA 12431, LAR 12247, and LAR 12002, respectively), EH3 chondrite (LAR 12001), diogenites (LAR 12010, 12248, 12320), howardite (LAR 12326), 3 irons (LAR 12059, 12204, and 12138), 3 shergottites (LAR 12011, 12095, and 12240), and the collections second winonaite (GRA 12510).

The 2013 season collection from the Miller Range (MIL13) features a lunar meteorite (MIL 13317), IAB iron (MIL 13013), aubrite (MIL 13004), CM1/2 chondrite (MIL 13005), and an unbrecciated eucrite (MIL 13019), as well as many others.

The diversity of materials from these two seasons is astounding and reflected in the large and steady number of requests we have received in the past several years. Speaking of numbers, with the recent field team collecting ~220 specimens, the total collected by ANSMET teams is ~22,013. Why the "~" you ask? During most field seasons, there are terrestrial samples collected and we slowly discover them as we classify all the samples. Therefore, we cannot give a specific number until all samples are classified (for example, the 2013 MIL season included 12 terrestrial samples). As of the Spring 2017 (this) newsletter, we have classified and announced 20,540 samples. And finally, just for more numbers – we have received >3,400 sample requests since 1978.

Updates to JSC webpage:

The bibliography of US Antarctic Meteorites has been updated to reflect 59 new publications from 2016. In addition, search options have been added, including ability to search by author, text, or year; users also have an option to output the search to an excel file.

Sample Request Deadline March 10, 2017

A periodical issued by the Meteorite Working Group to inform scientists of the basic characteristics of specimens recovered in the Antarctic.

Edited by Cecilia Satterwhite and Kevin Righter, NASA Johnson Space Center, Houston, Texas 77058

Inside this Issue

Curator's Comments	1
New Meteorites	9
Location Abbreviations	
and Map	9
Table 1: Newly Classified	
Antarctic Meteorites	10
Table 2: Newly Classified	
Meteorites by Type	14
Notes to Tables 1 & 2	15
Petrographic Descriptions	16
Sample Request Guidelines	26
Antarctic Meteorite Laboratory	
Contacts	26
Meteorites On-Line	27

1

The structure of the webpage has changed slightly to reflect updates and additions. The collection excel sheet has been updated to include all samples through AMN 39, no. 2, the list of bandsawed samples has been updated, and portions have been updated to reflect our current request, review, approval, allocation, and loan agreement processes.

Reminder to acknowledge samples received from NASA-JSC

When publishing results of your research, please include the split numbers used in the research.

We also request that scientists use the following acknowledgement statement when reporting the results of their research in peer reviewed journals: "US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program which has been funded by NSF and NASA, and characterized and curated by the Department of Mineral Sciences of the Smithsonian Institution and Astromaterials Curation Office at NASA Johnson Space Center." Such an acknowledgement will broaden the awareness of the funding mechanisms that make this program and these samples possible. We suggest you find out how to acknowledge samples received from all the collections/museums from which you have received materials so that all the institutions making samples available to you receive proper credit and acknowledgement.

Reclassifications

Over the last several years, we have been measuring magnetic susceptibility during the initial characterization of meteorites (see AMN vol. 39, no. 1). To make that data useful, and to verify what looked like a LL shower in the Dominion Range, we recently made thin sections of 15 large chondrites classified as LL, to compare to the magnetic susceptibility data. As it turns out, all 15 samples had olivine Fa contents of 24-25, which means these samples are L chondrites, not LL chondrites (see LPSC 2017 abstract # 2396). In fact, among the ~60 samples from Larkman Nunatak and Dominion Range that are part of the calibration of magnetic susceptibility versus X_{Fa} (probe data), all H chondrites had log c values > 4.9, and no LL chondrites had log c values > 4.4.

As a result, and using MS data published in AMN 39, no. 1, we have reclassified the samples listed below. We also note that there are ~140 ordinary chondrites from the 2003 season and ~990 from the 2008 season from the Dominion Range whose classification may be suspect and should be treated with caution until we verify these as well. There may be a large L shower associated with the Dominion Range and so the statistics from this region may be skewed from a regular distribution (see LPSC 2017 abstract # 2396).

Table 1: Reclassified to L - based on new microprobe data

Sample	Mass	Mag. Susc.	New Fa ²	Orig. ¹ / Revised ³
DOM 08017	1021.1	4.85	25	LL5/L5
DOM 08018	1447.8	4.83	25	LL6/L6
DOM 08019	1434.5	4.63	25	LL5/L5
DOM 08020	1020.6	4.84	25	LL5/L5
DOM 08021	1009.1	4.54	25	LL5/L5
DOM 08023	834.1	4.57	25	LL6/L6
DOM 08025	566.1	4.44	24	LL6/L6
DOM 08031	325.9	4.66	25	LL6/L6
DOM 10002	1621.5	4.61	25	LL5/L5
DOM 10003	1104.2	4.53	24	LL5/L5
DOM 10005	1083.3	4.64	25	LL6/L6
DOM 10007	583.7	4.42	25	LL6/L6
DOM 10008	471.2	4.71	24	LL5/L5
DOM 10200	445.9	4.55	24	LL6/L6
DOM 10300	409.6	4.47	25	LL6/L6

Classified as LL using immersion oils reported in AMN.
Newly measured Fa content.

3 - Revised classification based on electron microprobe and magnetic susceptibility data.

Reclassified to H using magnetic susceptibility

Sample	AMN	M ₀ (10 ⁻³)	Mass (g)	Log _x	Revised
	Classification	·		(10⁻⁰ m³/kg)	Classification
DOM 1003	0 L5	109	67.75	5.09	H5
DOM 1003	9 L5	189	95.23	5.25	H5
DOM 1005	1 L5	225	197	5.22	H5
DOM 1005	2 L5	189	147.72	5.14	H5
DOM 1005	5 L5	115	67.84	5.11	H5
DOM 1005	6 L5	62.7	43.15	4.96	H5
DOM 1007	2 L6	39.8	17.86	5.04	H6
DOM 1007	4 L6	43.2	14.37	5.15	H6
DOM 1007	6 L6	41.6	18.5	5.04	H6
DOM 1007	8 L5	39.2	14.13	5.12	H5
DOM 1008	6 L6	46.2	23.61	4.99	H6
DOM 1008	9 LL5	84.5	21.95	5.28	H5
DOM 10149	9 L5	110	61.01	5.12	H5
DOM 1016	0 L6	16.3	5.94	5.07	H6
DOM 1016	4 L6	27.6	11.31	5.05	H6
DOM 1016	7 L6	5.6	2.49	4.94	H6
DOM 1021	7 L5	35.7	18.61	4.97	H5
DOM 1022	8 L6	71.5	59.28	4.94	H6
DOM 10234	4 L6	28	13.72	4.98	H6
DOM 1023	5 L6	19.4	9.07	4.98	H6
DOM 1023	7 L6	22.4	10.18	5.00	H6
DOM 1024	6 LL6	143	79.4	5.17	H6
DOM 1024	7 L6	75.9	43.8	5.04	H6
DOM 1026	0 LL5	63.5	34.82	5.01	H5
DOM 1027	0 L6	4.85	2.06	4.95	H6

Sample	AMN Classification	M ₀ (10 ⁻³)	Mass (g)	Log _x (10 [.] ° m³/kg)	Revised Classification
DOM 10293	3 L6	69.2	41.23	5.01	H6
DOM 10295	5 L5	73.2	42.19	5.03	H5
DOM 10298	3 L6	99.5	46.17	5.14	H6
DOM 10370) L6	68.1	18.33	5.26	H6
DOM 10371	L6	77.1	24.64	5.20	H6
DOM 10682	2 L6	84.2	40.44	5.10	H6
DOM 10686	6 L6	209.0	181.6	5.13	H6

Reclassified to L using magnetic susceptibility

Sample	AMN	M ₀ (10 ⁻³)	Mass (g)	Log _x	Revised
	Classification			(10 ⁻⁹ m³/kg)	Classification
DOM 10032	2 LL6	36.7	56.31	4.66	L6
DOM 10033	3 LL6	95.3	124.11	4.88	L6
DOM 10035	5 LL6	66	87.78	4.81	L6
DOM 10036	6 LL6	47.5	81.3	4.68	L6
DOM 10037	7 LL6	40.5	48.46	4.74	L6
DOM 10038	3 LL6	57.5	79.29	4.77	L6
DOM 10053	3 LL6	48.9	93.24	4.66	L6
DOM 10054	4 LL6	48.2	77.71	4.70	L6
DOM 10057	7 LL6	42	67.03	4.68	L6
DOM 10058	3 LL6	62.3	67.88	4.84	L6
DOM 10060	D LL6	26.9	42.31	4.59	L6
DOM 1006	1 LL6	21.4	40.63	4.50	L6
DOM 10062	2 LL6	22	21.37	4.71	L6
DOM 10063	3 LL6	22.9	20.48	4.74	L6
DOM 10065	5 LL6	28.3	26.98	4.73	L6
DOM 10066	6 LL6	29.3	28	4.73	L6
DOM 10067	7 LL6	14.4	19.62	4.56	L6
DOM 10068	B LL6	17.8	23.95	4.57	L6
DOM 10070) LL6	8.6	12.63	4.50	L6
DOM 10073	3 LL6	8.88	8.88	4.65	L6
DOM 10075	5 LL6	15	22.046	4.53	L6
DOM 10079	9 LL6	16.7	23.25	4.56	L6
DOM 1008	1 LL6	36.2	36.26	4.76	L6
DOM 10082	2 LL6	32.7	33.95	4.73	L6
DOM 10083	3 LL6	26	28.31	4.68	L6
DOM 10084	4 LL5	14.6	17.16	4.62	L5
DOM 10087	7 LL6	30	45.15	4.62	L6
DOM 10140) LL5	55.3	223.77	4.60	L5
DOM 10143	3 LL6	58.3	124.56	4.67	L6
DOM 10144	4 LL6	45.4	80.66	4.67	L6
DOM 1014	5 LL6	33.5	71.35	4.56	L6
DOM 10146	6 LL6	27.9	42.44	4.61	L6
DOM 10148	3 LL6	39.4	54.51	4.70	L6
DOM 10150) LL6	24.2	23	4.72	L6
DOM 1015	1 LL6	34.4	31.93	4.77	L6
DOM 10152	2 LL6	27.6	34.26	4.65	L6
DOM 10153	3 LL6	20.2	35.55	4.51	L6

Classification(10° m'/kg)ClassificationDOM 10154LL527.127.334.71L5DOM 10155LL534.552.954.65L5DOM 10156LL632.536.24.71L6DOM 10157LL532.723.934.84L5DOM 10162LL612.814.74.62L6DOM 10162LL69.6410.384.63L6DOM 10162LL611.4144.59L6DOM 10168LL611.4144.59L6DOM 10168LL612.2154.59L6DOM 10181LL620.330.034.55L6DOM 10182LL511.610.034.72L5DOM 10185LL616.921.064.60L6DOM 10185LL529.9364.68L5DOM 10216LL529.9364.68L5DOM 10216LL533.333.674.74L5DOM 10216LL59.9211.24.61L5DOM 10220LL64778.874.69L6DOM 10221LL633.649.764.65L6DOM 10222LL627.832.74.67L6DOM 10224LL643.549.554.76L6DOM 10225LL627.832.74.67L6DOM 10224LL646.156.344.76L6	Sample	AMN	M _₀ (10 ⁻³)	Mass (g)	Log _x	Revised
DOM 10154 LL5 27.1 27.33 4.71 L5 DOM 10155 LL5 34.5 52.95 4.65 L5 DOM 10156 LL5 32.7 23.93 4.84 L5 DOM 10166 LL6 12.8 14.7 4.62 L6 DOM 10163 LL6 12.8 14.7 4.62 L6 DOM 10163 LL6 11.4 14 4.59 L6 DOM 10168 LL6 11.4 14 4.59 L6 DOM 10168 LL6 11.4 14 4.59 L6 DOM 10184 LL6 20.3 30.03 4.55 L6 DOM 10184 LL6 20.3 30.03 4.55 L6 DOM 10212 LL5 25.9 25.39 4.72 L5 DOM 10214 LL5 17 21.42 4.60 L5 DOM 10214 LL5 24.1 33.8 4.60 L5 DOM 10214 LL5		Classification	Ū	_	(10 ⁻⁹ m³/kg)	Classification
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	DOM 10154	LL5	27.1	27.33	4.71	L5
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	DOM 10155	LL5	34.5	52.95	4.65	L5
DOM 10167 LL5 32.7 23.93 4.84 L5 DOM 10162 LL6 12.8 14.7 4.62 L6 DOM 10163 LL6 11.8 11.3 4.68 L6 DOM 10166 LL6 11.8 11.3 4.68 L6 DOM 10169 LL6 12.2 15 4.59 L6 DOM 10189 LL5 11.6 10.03 4.72 L5 DOM 10184 LL6 20.3 30.03 4.55 L6 DOM 10184 LL6 16.9 21.06 4.60 L6 DOM 10210 LL5 25.9 25.39 4.72 L5 DOM 10212 LL5 33.3 33.67 4.74 L5 DOM 10218 LL5 9.92 11.2 4.61 L5 DOM 10218 LL5 9.92 11.2 4.61 L6 DOM 10221 LL6 35.3 52.2 4.66 L6 DOM 10221 LL6	DOM 10156	LL6	32.5	36.2	4.71	L6
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	DOM 10157	LL5	32.7	23.93	4.84	L5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOM 10162	LL6	12.8	14.7	4.62	L6
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	DOM 10163	LL6	9.64	10.38	4.63	L6
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	DOM 10166	LL6	11.8	11.3	4.68	L6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOM 10168	LL6	11.4	14	4.59	L6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOM 10169	LL6	12.2	15	4.59	L6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOM 10181	LL6	8.76	8.73	4.65	L6
DOM 10184 LL6 20.3 30.03 4.55 L6 DOM 10185 LL6 16.9 21.06 4.60 L6 DOM 10210 LL5 29.9 36 4.68 L5 DOM 10212 LL5 25.9 25.39 4.72 L5 DOM 10214 LL5 17 21.42 4.60 L5 DOM 10216 LL5 33.3 33.67 4.74 L5 DOM 10219 LL5 9.92 11.2 4.61 L5 DOM 10220 LL6 47 78.87 4.69 L6 DOM 10221 LL6 35.3 52.2 4.66 L6 DOM 10222 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 43.5 49.55 4.76 L6 DOM 10224 LL6 43.5 49.55 L6 DOM 10227 L6 24.8 44.43 4.55 L6 DOM 10226 LL6 13.1 17	DOM 10182	LL5	11.6	10.03	4.72	L5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOM 10184	LL6	20.3	30.03	4.55	L6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOM 10185	LL6	16.9	21.06	4.60	L6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOM 10210		29.9	36	4.68	L5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DOM 10212	LL5	25.9	25.39	4.72	 L5
DOM 10216 LL5 33.3 33.67 4.74 L5 DOM 10218 LL5 24.1 33.8 4.60 L5 DOM 10219 LL6 47 78.87 4.69 L6 DOM 10220 LL6 47 78.87 4.69 L6 DOM 10221 LL6 35.3 52.2 4.66 L6 DOM 10222 LL6 28.1 46.76 4.59 L6 DOM 10223 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 43.5 49.55 4.76 L6 DOM 10225 LL6 27.8 32.7 4.67 L6 DOM 10227 LL6 24.8 44.43 4.55 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 16.3 19.23 4.62 L6 DOM 10238 L	DOM 10214	115	17	21 42	4 60	15
DOM 10218 LL5 24.1 33.8 4.60 L5 DOM 10219 LL5 9.92 11.2 4.61 L5 DOM 10220 LL6 47 78.87 4.69 L6 DOM 10221 LL6 35.3 52.2 4.66 L6 DOM 10221 LL6 28.1 46.76 4.59 L6 DOM 10223 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 23.1 46.76 4.65 L6 DOM 10224 LL6 24.8 44.43 4.67 L6 DOM 10225 LL6 24.8 44.43 4.55 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 16.3 19.23 4.64 L6 DOM 10238 LL6 8.94 9.23 4.64 L6 DOM 10239	DOM 10216	115	33.3	33 67	4 74	15
DOM 10219 LL5 9.92 11.2 4.61 L5 DOM 10220 LL6 47 78.87 4.69 L6 DOM 10221 LL6 35.3 52.2 4.66 L6 DOM 10222 LL6 28.1 46.76 4.65 L6 DOM 10223 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 43.5 49.55 4.76 L6 DOM 10224 LL6 27.8 32.7 4.67 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 16.3 19.23 4.62 L6 DOM 10233 LL6 8.94 9.23 4.64 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10240	DOM 10218	11.5	24 1	33.8	4 60	15
DOM 10220 LL6 47 78.87 4.69 L6 DOM 10221 LL6 35.3 52.2 4.66 L6 DOM 10222 LL6 28.1 46.76 4.65 L6 DOM 10223 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 43.5 49.55 4.76 L6 DOM 10225 LL6 34 60.04 4.61 L6 DOM 10226 LL6 27.8 32.7 4.67 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10233 LL6 8.58 11.34 4.54 L6 DOM 10230 LL6 14.7 18.83 4.62 L6 DOM 10239 LL6 14.7 18.83 4.68 L6 DOM 10240	DOM 10219	11.5	9.92	11 2	4 61	15
DOM 10221 LL6 35.3 52.2 4.66 L6 DOM 10222 LL6 28.1 46.76 4.59 L6 DOM 10223 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 43.5 49.55 4.76 L6 DOM 10225 LL6 34 60.04 4.61 L6 DOM 10225 LL6 27.8 32.7 4.67 L6 DOM 10226 LL6 27.8 32.7 4.67 L6 DOM 10227 LL6 24.8 44.43 4.55 L6 DOM 10229 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 13.1 17.83 4.62 L6 DOM 10233 LL6 8.58 11.34 4.54 L6 DOM 10238 LL6 14.7 18.83 4.62 L6 DOM 10240 LL6 51.6 102.54 4.66 L6 DOM 10241 <t< td=""><td>DOM 10220</td><td>116</td><td>47</td><td>78.87</td><td>4 69</td><td>16</td></t<>	DOM 10220	116	47	78.87	4 69	16
DOM 10222 LL6 28.1 46.76 4.59 L6 DOM 10223 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 33.6 49.76 4.65 L6 DOM 10225 LL6 34 60.04 4.61 L6 DOM 10226 LL6 27.8 32.7 4.67 L6 DOM 10227 LL6 24.8 44.43 4.55 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10233 LL6 8.58 11.34 4.54 L6 DOM 10233 LL6 14.7 18.83 4.58 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10240 LL6 56.1 110.53 4.66 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6	DOM 10221	116	35.3	52.2	4 66	16
DOM 10223 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 33.6 49.76 4.65 L6 DOM 10224 LL6 34 60.04 4.61 L6 DOM 10225 LL6 27.8 32.7 4.67 L6 DOM 10226 LL6 27.8 32.7 4.67 L6 DOM 10227 LL6 24.8 44.43 4.55 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10233 LL6 8.58 11.34 4.54 L6 DOM 10236 LL6 16.3 19.23 4.62 L6 DOM 10238 LL6 56.1 110.53 4.68 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10240 LL6 51.6 102.54 4.66 L6 DOM 10241 LL6 56.8 103.15 4.70 L6 DOM 10242 LL6	DOM 10222		28.1	46 76	4 59	16
DOM 10224 LL6 43.5 49.55 4.76 L6 DOM 10225 LL6 34 60.04 4.61 L6 DOM 10226 LL6 27.8 32.7 4.67 L6 DOM 10227 LL6 24.8 44.43 4.55 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 8.58 11.34 4.54 L6 DOM 10233 LL6 8.94 9.23 4.62 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10240 LL6 51.6 102.54 4.66 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10241 LL6 56.8 103.15 4.70 L6 DOM 10243 LL6 36.3 36.29 4.76 L6 DOM 10244	DOM 10222		33.6	49 76	4 65	16
DOM 10225 LL6 34 60.04 4.61 L6 DOM 10226 LL6 27.8 32.7 4.67 L6 DOM 10227 LL6 24.8 44.43 4.55 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 16.3 19.23 4.62 L6 DOM 10238 LL6 8.58 11.34 4.54 L6 DOM 10238 LL6 16.3 19.23 4.62 L6 DOM 10238 LL6 14.7 18.83 4.58 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10240 LL6 51.6 102.54 4.66 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6 35.3 72.7 4.67 L6 DOM 10243 LL6 56.8 103.15 4.70 L6 DOM 10244 LL6	DOM 10220		43.5	49.55	4.00	16
DOM 10226 LL6 27.8 32.7 4.67 L6 DOM 10227 LL6 24.8 44.43 4.55 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 16.3 19.23 4.62 L6 DOM 10236 LL6 16.3 19.23 4.64 L6 DOM 10238 LL6 14.7 18.83 4.58 L6 DOM 10240 LL6 56.1 110.53 4.68 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10241 LL6 56.8 103.15 4.70 L6 DOM 10241 LL6 56.8 103.15 4.69 L6 DOM 10241 LL6 56.8 103.15 4.70 L6 DOM 10242 LL6 35.3 45.95 4.69 L6 DOM 10244 <t< td=""><td>DOM 10224</td><td></td><td>34</td><td>60.04</td><td>4.70</td><td>16</td></t<>	DOM 10224		34	60.04	4.70	16
DOM 10227 LL6 24.8 44.43 4.55 L6 DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 16.3 19.23 4.62 L6 DOM 10236 LL6 16.3 19.23 4.64 L6 DOM 10238 LL6 8.58 11.34 4.54 L6 DOM 10239 LL6 14.7 18.83 4.62 L6 DOM 10240 LL6 56.1 110.53 4.68 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6 43.5 72.7 4.67 L6 DOM 10243 LL6 56.8 103.15 4.70 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10245 LL6 36.3 36.29 4.76 L6 DOM 10261 <td< td=""><td>DOM 10226</td><td></td><td>27.8</td><td>32.7</td><td>4 67</td><td>16</td></td<>	DOM 10226		27.8	32.7	4 67	16
DOM 10229 LL6 46.1 56.34 4.76 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10233 LL6 8.58 11.34 4.54 L6 DOM 10236 LL6 16.3 19.23 4.62 L6 DOM 10238 LL6 8.94 9.23 4.64 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10240 LL6 56.1 110.53 4.68 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6 43.5 72.7 4.67 L6 DOM 10243 LL6 56.8 103.15 4.70 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10261 L6 36.3 36.29 4.76 L6 DOM 10263	DOM 10220		24.8	44 43	4 55	16
DOM 10220 LL6 13.1 17.83 4.55 L6 DOM 10230 LL6 13.1 17.83 4.55 L6 DOM 10233 LL6 8.58 11.34 4.54 L6 DOM 10236 LL6 16.3 19.23 4.62 L6 DOM 10238 LL6 8.94 9.23 4.64 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10240 LL6 56.1 110.53 4.68 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6 43.5 72.7 4.67 L6 DOM 10243 LL6 56.8 103.15 4.70 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10244 LL6 56.3 36.29 4.76 L6 DOM 10261 LL6 36.3 36.29 4.76 L6 DOM 10263	DOM 10229	116	46.1	56 34	4 76	16
DOM 10233 LL6 8.58 11.34 4.54 L6 DOM 10236 LL6 16.3 19.23 4.62 L6 DOM 10238 LL6 8.94 9.23 4.64 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10239 LL6 14.7 18.83 4.64 L6 DOM 10240 LL6 56.1 110.53 4.68 L6 DOM 10240 LL6 51.6 102.54 4.66 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6 43.5 72.7 4.67 L6 DOM 10243 LL6 34.8 52.38 4.65 L6 DOM 10243 LL6 35.3 45.95 4.69 L6 DOM 10244 LL6 36.3 36.29 4.76 L6 DOM 10245 LL6 36.3 36.29 4.76 L6 DOM 10261 LL6 27.1 21.31 4.80 L6 DOM 10264 L	DOM 10220		13.1	17.83	4 55	16
DOM 10236 LL6 16.3 19.23 4.62 L6 DOM 10238 LL6 8.94 9.23 4.64 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10239 LL6 14.7 18.83 4.64 L6 DOM 10240 LL6 56.1 110.53 4.68 L6 DOM 10240 LL6 51.6 102.54 4.66 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6 43.5 72.7 4.67 L6 DOM 10243 LL6 56.8 103.15 4.70 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10249 LL6 36.3 36.29 4.76 L6 DOM 10261 LL6 27.1 21.31 4.80 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 <td< td=""><td>DOM 10233</td><td></td><td>8.58</td><td>11.34</td><td>4 54</td><td>16</td></td<>	DOM 10233		8.58	11.34	4 54	16
DOM 10238 LL6 8.94 9.23 4.64 L6 DOM 10239 LL6 14.7 18.83 4.58 L6 DOM 10240 LL6 56.1 110.53 4.68 L6 DOM 10240 LL6 56.1 110.53 4.68 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6 43.5 72.7 4.67 L6 DOM 10243 LL6 56.8 103.15 4.70 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10245 LL6 36.3 36.29 4.76 L6 DOM 10261 LL6 27.1 21.31 4.80 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10266	DOM 10236		16.3	19.23	4 62	16
DOM 10239LL614.718.834.58L6DOM 10240LL656.1110.534.68L6DOM 10241LL651.6102.544.66L6DOM 10242LL643.572.74.67L6DOM 10243LL634.852.384.65L6DOM 10244LL656.8103.154.70L6DOM 10245LL635.345.954.69L6DOM 10244LL656.8103.154.70L6DOM 10245LL635.345.954.69L6DOM 10261LL636.336.294.76L6DOM 10263LL621.730.784.57L6DOM 10264LL627.121.314.80L6DOM 10265LL61716.884.69L6DOM 10266LL630.928.354.75L6DOM 10267LL626.233.534.64L6DOM 10268LL522.636.514.55L5DOM 10269LL636.936.624.77L6	DOM 10238	116	8.94	9.23	4 64	16
DOM 10240 LL6 56.1 110.53 4.68 L6 DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6 43.5 72.7 4.67 L6 DOM 10243 LL6 34.8 52.38 4.65 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10244 LL6 56.8 103.15 4.69 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10245 LL6 36.3 36.29 4.76 L6 DOM 10261 LL6 21.7 30.78 4.57 L6 DOM 10263 LL6 27.1 21.31 4.80 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10266 LL6 30.9 28.35 4.75 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 L	DOM 10239	116	14 7	18.83	4 58	16
DOM 10241 LL6 51.6 102.54 4.66 L6 DOM 10242 LL6 43.5 72.7 4.67 L6 DOM 10243 LL6 34.8 52.38 4.65 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10249 LL6 36.3 36.29 4.76 L6 DOM 10261 LL6 36.3 36.29 4.76 L6 DOM 10263 LL6 27.1 21.31 4.80 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10265 LL6 30.9 28.35 4.75 L6 DOM 10266 LL6 26.2 33.53 4.64 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL	DOM 10240		56.1	110.53	4 68	16
DOM 10242 LL6 43.5 72.7 4.67 L6 DOM 10243 LL6 34.8 52.38 4.65 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10249 LL6 36.3 36.29 4.76 L6 DOM 10261 LL6 36.3 36.29 4.76 L6 DOM 10263 LL6 21.7 30.78 4.57 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10265 LL6 30.9 28.35 4.75 L6 DOM 10266 LL6 30.9 28.35 4.55 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6<	DOM 10241	116	51.6	102 54	4 66	16
DOM 10243 LL6 34.8 52.38 4.65 L6 DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10249 LL6 36.3 36.29 4.76 L6 DOM 10261 LL6 36.3 36.29 4.76 L6 DOM 10263 LL6 21.7 30.78 4.57 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10266 LL6 30.9 28.35 4.75 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10242	116	43.5	72 7	4 67	16
DOM 10244 LL6 56.8 103.15 4.70 L6 DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10249 LL6 46.5 64.14 4.73 L6 DOM 10261 LL6 36.3 36.29 4.76 L6 DOM 10263 LL6 21.7 30.78 4.57 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10266 LL6 30.9 28.35 4.75 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10243	116	34.8	52.38	4 65	16
DOM 10245 LL6 35.3 45.95 4.69 L6 DOM 10249 LL6 46.5 64.14 4.73 L6 DOM 10261 LL6 36.3 36.29 4.76 L6 DOM 10263 LL6 21.7 30.78 4.57 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10265 LL6 30.9 28.35 4.75 L6 DOM 10266 LL6 26.2 33.53 4.64 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10244	116	56.8	103 15	4 70	16
DOM 10249 LL6 46.5 64.14 4.73 L6 DOM 10261 LL6 36.3 36.29 4.76 L6 DOM 10263 LL6 21.7 30.78 4.57 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10266 LL6 30.9 28.35 4.75 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10245	116	35.3	45.95	4 69	16
DOM 10261 LL6 36.3 36.29 4.76 L6 DOM 10263 LL6 21.7 30.78 4.57 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10266 LL6 30.9 28.35 4.75 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10249	116	46.5	64 14	4 73	16
DOM 10263 LL6 21.7 30.78 4.57 L6 DOM 10264 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10266 LL6 30.9 28.35 4.75 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10261	116	36.3	36.29	4 76	16
DOM 10260 LL6 27.1 21.31 4.80 L6 DOM 10265 LL6 17 16.88 4.69 L6 DOM 10266 LL6 30.9 28.35 4.75 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10263	116	21 7	30.78	4 57	16
DOM 10265 LL6 17 16.88 4.69 L6 DOM 10266 LL6 30.9 28.35 4.75 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10264	116	27.1	21.31	4 80	16
DOM 10260 LL6 30.9 28.35 4.75 L6 DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10265		17	16.88	4 69	16
DOM 10267 LL6 26.2 33.53 4.64 L6 DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10266	116	30.9	28.35	4 75	16
DOM 10268 LL5 22.6 36.51 4.55 L5 DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10260	116	26.2	33 53	4 64	16
DOM 10269 LL6 36.9 36.62 4.77 L6	DOM 10268	115	22.6	36.51	4 55	15
	DOM 10260	116	36.9	36.62	4 77	16
DOM 10272 LL5 5.08 5.64 4.58 L5	DOM 10272	LL5	5.08	5.64	4.58	 L5

Sample	AMN Classification	M ₀ (10 ⁻³)	Mass (g)	Log_{X}	Revised
	Classification			(10°1117/kg)	Classification
DOM 10274	4 LL5	8.35	7.94	4.67	L5
DOM 10276	6 LL5	9.41	9.36	4.66	L5
DOM 10277	7 LL5	12.8	12.42	4.68	L5
DOM 10279	9 LL5	5.61	4.67	4.70	L5
DOM 10290	D LL6	36.4	48.31	4.69	L6
DOM 10291	1 LL6	33.7	39.56	4.71	L6
DOM 10292	2 LL6	44.2	44.86	4.79	L6
DOM 10294	1 LL6	47.2	45.44	4.82	L6
DOM 10296	6 LL6	38.9	48.63	4.72	L6
DOM 10297	7 LL6	24.1	28.88	4.64	L6
DOM 10372	2 LL6	16.1	19.45	4.61	L6
DOM 10373	3 LL6	20.2	30.39	4.54	L6
DOM 10374	4 LL6	32.3	57.07	4.60	L6
DOM 10375	5 LL5	52.6	73.07	4.75	L5
DOM 10376	6 LL5	56.2	50.6	4.87	L5
DOM 10377	7 LL6	44.6	41.88	4.82	L6
DOM 10379) LL6	46.3	91.47	4.64	L6
DOM 10432	2 LL6	4.66	8.75	4.38	L6
DOM 10436	6 LL5	8.4	14	4.45	L5
DOM 10437	7 LL5	9.62	15.9	4.46	L5
DOM 10438	3 LL5	14	23.38	4.48	L5
DOM 10443	3 LL5	26.7	46.1	4.57	L5
DOM 10444	4 LL6	26.7	42.29	4.59	 L6
DOM 10446	6 LL5	21.1	35.38	4.53	 L5
DOM 10447	7 115	37.8	78 54	4 59	15
DOM 10448	3 116	22.3	55 71	4 45	16
DOM 10449	9 115	57.7	89.64	4 74	15
DOM 10457	7 115	31	62.33	4 56	15
DOM 10460) 116	37.8	44.38	4 73	16
DOM 1046		34.9	80.48	4 55	16
DOM 10462	2 116	22.3	49.46	4 47	16
DOM 10463	3 116	<u>44</u> 1	60.77	4 72	16
DOM 10464		51	41 19	4.88	16
DOM 1046	5 116	37	40.21	4.00	16
DOM 10460		20.7	15.5	4.74	16
DOM 10460		19.5	24.08	4.61	
DOM 1054	5 116	10.05	1/ 2	1.82	
DOM 1054		19.95 25 7	50 59	4.02	
DOM 1068		20.7 12.9	71 00	4.49	
DOM 1068		43.0	71.09	4.00	LO
		37.1	50.09	4.09	LO
		40.9	57.19	4.70	
		40.4	57.44 72.00	4.78	Lb
DOM 1068		48.7	/3.92	4.72	LO
DOM 10688		79.6	156.11	4.75	LG
DOM 10689	J LL6	89.9	210.59	4.81	L6

ANSMET 2016-2017 Field Season

Jim Karner, Ralph Harvey and John Schutt Case Western Reserve University

The 2016-17 field season was marked by a major change in plans, and then a major delay getting into the field, ugh! ANSMET had planned to send a group of eight to work out of the Shackleton Glacier Camp (SHG) in the southern TransAntarctic Mountains. From there the group would split into two teams of four, and each team would search for and recover meteorites from nearby ice fields. That plan was not meant to be, however, because by mid-December the SHG was experiencing a serious shortage of fuel and logistical resources, and would be unable to support the ANSMET team. We quickly descoped our field season (so as to not be cancelled outright) and planned for a trip to the Elephant Moraine (EET) icefields, which could be supported out of McMurdo Station. ANSMET had recovered over 2000 meteorites from EET in the past, but the area had not been visited since 1999 due to extensive snow cover. The new season plan would allow ANSMET to recover meteorites from previously

searched and unsearched areas of the vast icefields at EET (Figure 1).

The team was ready for put-in to EET on December 15. but a slew of bad weather at McMurdo and/ or EET delayed John Schutt, Jani Radebaugh, Brian Rougeux, and Minako Righter until December 29. Another week of bad weather kept Jim Karner and Alex Meshik in McMurdo until Jan. 3. The full team was at EET from Jan. 4 to Jan. 19, but during that time the team was limited to only seven full days of searching out of a possible 14 working days. It turns out EET has a lot of bad weather - seriously windy, cold, lots of blowing snow! Anyway, the team worked hard when it could and employed recon and systematic searching throughout the vast EET icefields. The team recovered a total of 173 meteorites: that, added to Duck Mittlefelhdt and John Schutt's recon efforts earlier in the season, made for a grand total of 219 meteorites recovered for the 2016-17 field season. A smaller quantity than in most ANSMET seasons, but hopefully they will be of high quality!

Figure 1. ANSMET team members search for meteorites near their camp at EET.

Report from the Smithsonian -

Cari Corrigan

All is well in the Division of Meteorites at the Smithsonian. We are pleased to report that our new electron microprobe (a JEOL JXA 8530f Hyperprobe) arrived on November 1st, 2016, and is built and in the initial stages of testing. This new instrument will be used to classify the Antarctic Meteorites and will provide us with state of the art capabilities to do so. Here's hoping that all of the microprobe analyses in the Fall newsletter come to you from the new instrument! We have two new volunteers on board with the Division of Meteorites. Greg Polley, who has a Masters Degree in Geology from the University of Maryland and has been working to complete the inventory of photographs of every Antarctic meteorite thin section in our collection. Doug Ross, a local musician and meteorite enthusiast, has recently come on board as well, and has been great about lending a hand while learning more about meteorites. We are happy to have them here, and appreciate their help and enthusiasm!

Cari Corrigan and Tim Rose and the HYPER PROBE

Greg Polley - SI Volunteer

Doug Ross - SI Volunteer

New Meteorites

2012-2015 Collection

Pages 5-17 contain preliminary descriptions and classifications of meteorites that were completed since publication of issue 39(2), Sept. 2016. Specimens of special petrologic type (carbonaceous chondrite, unequilibrated ordinary chondrite, achondrite, etc.) are represented by separate descriptions unless they are paired with previously described meteorites. However, some specimens of non-special petrologic type are listed only as single line entries in Table 1. For convenience, new specimens of special petrological type are also recast in Table 2.

Antarctic Meteorite Locations

ALH Allan Hills BEC _ Beckett Nunatak BOW -**Bowden Neve** BTN Bates Nunataks BUC _ **Buckley Island Cumulus Hills** CMS _ CRA _ Mt.Cranfield Ice Field CRE — Mt. Crean _ DAV David Glacier DEW - Mt. DeWitt DNG - D'Angelo Bluff DOM — Dominion Range DRP Derrick Peak EET Elephant Moraine FIN Finger Ridge GDR — Gardner Ridge GEO **Geologists Range** _ GRA Graves Nunataks GRO Grosvenor Mountains _ HOW - Mt. Howe ILD Inland Forts KLE Klein Ice Field LAP LaPaz Ice Field LAR Larkman Nunatak LEW — Lewis Cliff LON - Lonewolf Nunataks MAC — MacAlpine Hills

Macroscopic descriptions of stony meteorites were performed at NASA/JSC. These descriptions summarize handspecimen features observed during initial examination. Classification is based on microscopic petrography and reconnaissance-level electron microprobe analyses using polished sections prepared from a small chip of each meteorite. For each stony meteorite the sample number assigned to the preliminary examination section is included. In some cases, however, a single microscopic description was based on thin sections of several specimens believed to be members of a single fall.

Meteorite descriptions contained in this issue were contributed by the following individuals:

Rachel Funk, Roger Harrington and Cecilia Satterwhite Antarctic Meteorite Laborabory NASA Johnson Space Center Houston, Texas

Cari Corrigan, Julie Hoskins, Nicole Lunning and Tim McCoy Department of Mineral Sciences U.S. National Museum of Natural History - Smithsonian Institution Washington, D.C.

	_	WOULL Dalui	1kg
MCY	—	MacKay Glacier	
MET	—	Meteorite Hills	S
MIL	—	Miller Range	in the
ODE	_	Odell Glacier	
OTT	—	Outpost Nunatak	19
PAT	—	Patuxent Range	
PCA	—	Pecora	
		Escarpment	and a la
PGP	—	Purgatory Peak	111 A
PRA	_	Mt. Pratt	
PRE	—	Mt. Prestrud	
QUE	—	Queen Alexandra	All Car
		Range	A N
RBT	—	Roberts Massif	Li
RKP	—	Reckling Peak	
SAN	—	Sandford Cliffs	All .
SCO	—	Scott Glacier	stat
STE	_	Stewart Hills	14
s SZA	_	Szabo Bluff	
TEN	_	Tentacle Ridge	1
TIL	—	Thiel Mountains	Sec. 1
TYR	—	Taylor Glacier	
WIS	—	Wisconsin Range	
WSG	—	Mt. Wisting	
		-	

Table 1Newly Classified Antarctic Meteorites

<u>Sample</u>						
Number	<u>Weight (g)</u>	Classification	Weathering	Fracturing	<u>%Fa</u>	<u>%Fs</u>
LAR 12056	57.0	LL6 Chondrite	A/B	A	30	25
LAR 12156	59.2	EH3 Chondrite	А	A/B		0-7
LAR 12196	16.6	H6 Chondrite	А	А	20	
LAR 12215	6.6	H6 Chondrite	B/C	A/B	19	17
LAR 12241	126.0	LL5 Chondrite	А	B/C	31	25
LAR 12244	131.2	EH3 Chondrite	A/B	А		0-3
LAR 12279	76.9	EL6 Chondrite	A/B	А		0-1
MIL 13002	3691.3	H5 Chondrite	В	B/C	19	17
MIL 13008	2060.8	L5 Chondrite	A/B	В	23	21
MIL 13011	730.3	L5 Chondrite	B/C	A/B	25	21
MIL 13032	0.6	CV3 Chondrite	A/B	A	1-2	1-2
MIL 13034	4.4	H4 Chondrite	В	A	19	3-18
MIL 13037	0.2	CM1 Chondrite	A/Be	A		
MIL 13039	39.5	H4 Chondrite	B/C	A	17	16
MIL 13059	0.7	LL5 Chondrite	A/B	A	29	25
MIL 13063	0.2	CM1 Chondrite	A/B	A/B		
MIL 13065	0.1	CM2 Chondrite	A/B	A	1-5	2-7
MIL 13100	26.8	L6 Chondrite	A/Be	B/C	26	
MIL 13101	11.1	H5 Chondrite	B/C	A/B	21	
MIL 13102	36.9	L6 Chondrite	A/B	A/B	26	
MIL 13103	41.5	L6 Chondrite	B/C	A/B	23	21
MIL 13104	46.5	LL5 Chondrite	Be	В	30	25
MIL 13105	37.4	H5 Chondrite	B/C	A/B	20	
MIL 13106	15.9	H6 Chondrite	B/C	A	19	
MIL 13107	37.7	H6 Chondrite	Ce	В	20	18
MIL 13108	24.6	L5 Chondrite	В	A/B	25	
MIL 13109	12.6	H6 Chondrite	Ce	A	20	
MIL 13130	16.8	LL6 Chondrite	A/B	A	28	
MIL 13131	11.4	H6 Chondrite	B/C	A	20	
MIL 13133	11.7	H5 Chondrite	B/C	A/B	21	
MIL 13134	15.6	L6 Chondrite	В	A	25	
MIL 13135	11.7	H6 Chondrite	A/B	A	18	
MIL 13136	0.8	CK3-6 Chondrite	В	A	18-34	
MIL 13137	0.5	CM2 Chondrite	В	A	1-47	1-4
MIL 13138	3.6	LL5 Chondrite	B	A	29	24
MIL 13140	9.0	LL5 Chondrite	Be	A	28	24
MIL 13141	3.0	LL4 Chondrite	Ве	A	28	24
MIL 13142	17.3	LL6 Chondrite	B	AVB	28	
IVIIL 13144	2.3	Ho Chondrite	B/C	A	20	
MIL 13145	10.6	L5 Chondrite	B/C	A	20 10	
MIL 13146	10.4	H6 Chondrite	B/C	A/B	19	
IVIIL 1314/	2.3		B/C	AVB	25	
	0.0		B/C	A	21	
IVIL 13149	42.5		Be	AVB	21	
	0.0		AVB	A	25 40	47
IVIIL 13151	1.0	H4 Chondrite	B/C	AVB	18	17

Sample						
Number	<u>Weight (g)</u>	Classification	Weathering	Fracturing	<u>%Fa</u>	<u>%Fs</u>
MIL 13152	1.8	EH3 Chondrite	B/C	A/B		0-1
MIL 13153	1.1	H6 Chondrite	B/C	A/B	18	
MIL 13154	0.7	L5 Chondrite	A/B	A/B	25	
MIL 13155	1.7	LL4 Chondrite	В	A	29	
MIL 13156	1.6	L6 Chondrite	B/C	A	25	
MIL 13157	0.8	LL5 Chondrite	A/B	A	29	
MIL 13158	1.7	H6 Chondrite	B/C	A	20	
MIL 13159	2.0	H6 Chondrite	B/C	A	20	
MIL 13160	5.3	H6 Chondrite	С	A/B	18	
MIL 13161	3.7	H5 Chondrite	Ce	A/B	18	
MIL 13162	5.0	H5 Chondrite	B/C	B/C	19	
MIL 13163	5.0	H5 Chondrite	С	A	20	
MIL 13164	5.2	L5 Chondrite	С	B/C	26	
MIL 13165	5.4	L4 Chondrite	С	A/B	25	22
MIL 13166	16.6	L5 Chondrite	Ce	А	25	
MIL 13167	10.2	LL5 Chondrite	A/B	В	29	24
MIL 13168	5.7	L5 Chondrite	С	В	25	
MIL 13169	2.0	CM2 Chondrite	Be	A/B	0-67	
MIL 13170	1.8	H5 Chondrite	В	A'	19	
MIL 13171	1.1	LL4 Chondrite	A/Be	А	28	25
MIL 13172	1.2	LL4 Chondrite	A/B	А	30	
MIL 13173	2.5	L5 Chondrite	B/C	А	25	
MIL 13174	2.6	Mesosiderite	Be	A/B		28-57
MIL 13175	1.3	L6 Chondrite	В	А	26	
MIL 13176	3.3	H5 Chondrite	B/C	A/B	20	
MIL 13177	2.9	LL5 Chondrite	В	А	29	
MIL 13178	1.5	H6 Chondrite	B/C	A/B	21	
MIL 13179	0.3	L6 Chondrite	В	А	26	22
MIL 13180	1.1	Ureilite	В	А	12-13	11
MIL 13181	0.8	L6 Chondrite	В	А	26	
MIL 13182	1.4	L5 Chondrite	B/C	А	26	23
MIL 13183	0.1	LL6 Chondrite	В	А	29	
MIL 13184	0.9	L6 Chondrite	В	А	25	
MIL 13185	1.1	H5 Chondrite	B/C	А	20	
MIL 13186	0.5	LL4 Chondrite	В	А	29	
MIL 13188	0.9	LL5 Chondrite	В	А	29	
MIL 13189	2.7	L6 Chondrite	B/C	А	25	
MIL 13190	1.9	L4 Chondrite	В	А	26	
MIL 13191	4.6	LL4 Chondrite	В	А	29	
MIL 13192	2.4	LL5 Chondrite	В	A/B	29	
MIL 13193	7.6	H6 Chondrite	B/C	А	19	
MIL 13194	5.5	H5 Chondrite	B/C	А	21	
MIL 13195	6.7	H4 Chondrite	В	A/B	20	17
MIL 13196	10.7	H6 Chondrite	B/C	A/B	19	
MIL 13198	8.4	H5 Chondrite	B/C	A/B	19	17
MIL 13199	11.2	H5 Chondrite	B/C	А	20	
MIL 13210	2.2	L6 Chondrite	В	А	25	
MIL 13211	0.5	EH3 Chondrite	A/B	В		1-3
MIL 13213	3.2	H6 Chondrite	B/C	А	18	

Sample					0/ 🗖 -	0/ 🗖 -
Number	<u>weight (g)</u>	Classification	weathering	Fracturing	<u>%⊧a</u>	<u>%FS</u>
MIL 13214	1.5	CO3 Chondrite	B/C	В	1-28	1-2
MIL 13215	6.1	H5 Chondrite	В	A	20	
MIL 13216	1.2	LL4 Chondrite	В	A/B	29	
MIL 13217	2.5	H5 Chondrite	В	A	19	
MIL 13218	2.0	H6 Chondrite	С	В	20	
MIL 13219	1.2	H5 Chondrite	С	В	20	
MIL 13220	0.6	L6 Chondrite	B/C	А	25	
MIL 13221	1.0	H5 Chondrite	B/C	A	20	
MIL 13222	1.4	LL5 Chondrite	A/B	А	30	
MIL 13223	0.7	L5 Chondrite	A/B	А	25	
MIL 13224	0.7	LL6 Chondrite	A/B	A	29	
MIL 13226	0.7	EH3 Chondrite	A/B	A/B		0-1
MIL 13227	2.2	L5 Chondrite	A/B	А	25	
MIL 13228	3.3	LL5 Chondrite	В	А	28	25
MIL 13229	3.9	H5 Chondrite	B/C	A/B	20	
MIL 13230	1.8	L6 Chondrite	B/C	А	26	
MIL 13231	0.8	H5 Chondrite	В	А	18	
MIL 13232	0.3	L5 Chondrite	В	А	26	
MIL 13233	0.1	CM2 Chondrite	В	А	0-2	
MIL 13234	0.7	H5 Chondrite	В	A/B	20	
MIL 13235	1.5	LL6 Chondrite	В	А	29	24
MIL 13236	0.7	L4 Chondrite	В	А	25	21
MIL 13237	1.0	H6 Chondrite	B/C	А	20	
MIL 13238	0.4	LL6 Chondrite	В	А	28	
MIL 13239	1.5	H6 Chondrite	B/C	А	19	
MIL 13240	0.9	LL5 Chondrite	В	А	30	
MIL 13241	0.6	CV3 Chondrite	A/Be	A/B	1-2	6
MIL 13242	0.8	H5 Chondrite	A/B	A/B	19	-
MIL 13243	0.6	L5 Chondrite	A/B	A	26	
MIL 13244	0.2	H6 Chondrite	A/B	A	20	
MIL 13245	0.4	H6 Chondrite	A/B	A	20	
MII 13246	22	LI 5 Chondrite	B	A	29	
MII 13247	55	CK6 Chondrite	B/C	A	36	
MII 13248	5.5	LI 3 5 Chondrite	B	A	1-37	12-19
MIL 13249	7.1	H6 Chondrite	B/Ce	A/B	21	
MIL 13250	15	L 6 Chondrite	С	B	26	
MIL 13251	3.8	L 6 Chondrite	B	A/B	26	
MIL 13252	22	H6 Chondrite	B/C	B	20	
MIL 13253	0.9	L 5 Chondrite	A/B	A/B	25	
MIL 13254	1 1	LL 5 Chondrite	A/B	A	30	
MIL 13255	0.3	H5 Chondrite	A/B	A	20	
MIL 13256	0.0	H5 Chondrite	A/B	Δ	18	
MIL 13257	1.8	H5 Chondrite	, vD R	B	20	
MIL 13258	1.0	L 5 Chondrite	A/R	۵/R	25	
MII 13250	0.6	LI 5 Chondrite	Δ/R	Δ	20	
MII 13260	12 4	114 Chondrite	Δ/R	Δ/R	27	15_22
MII 13260	77	Le Chondrite		R	21	10-20
MII 13201	7.7 ⊿ 1	Le Chondrite		۵ ۵/R	20	
MII 1326/	0.6	LI 5 Chondrite	Δ	Δ/R	20	
	0.0		~		23	

<u>Sample</u> Number	Weight (g)	Classification	Weathering	Fracturing	%Fa	%Fs
MII 13265	11.5	H6 Chondrite	A/R	R	<u>20</u>	/01 3
MIL 13266	3.0	H6 Chondrite	A/B	A	20	
MIL 13267	3.5	H6 Chondrite	B	A/B	20	
MIL 13268	0.8	LL 5 Chondrite	۵/R	Δ	20	24
MIL 13269	12	CM2 Chondrite		B/C	1_47	1_12
MIL 13270	1.2	H6 Chondrite	B/C	A/R	20	1 12
MIL 13271	1.0	LL 5 Chondrite	۵/۵ ۵/R	Δ	28	
MIL 13272	2.0	H6 Chondrite	B/C	Δ	10	
MIL 13272	2.0 1 <i>4</i>	L 6 Chondrite	B	B	25	
MIL 13274	1.4	H6 Chondrite	۵/R	۵/R	21	
MIL 13275	0.4	L 6 Chondrite	A/B	A/B	25	
MIL 13276	29	H5 Chondrite	R	A/B	19	
MIL 13277	0.5	L 6 Chondrite	۵/R	Δ/B	25	
MIL 13277	2.2	H6 Chondrite	R/Co		20	
MIL 13270	1.2	LL 6 Chondrite	B/C	Δ/R	21	
MIL 13273	24.3	LLO Chondrite	<u>Б</u> (С	Δ/B	23	21
MIL 13312	24.5	H6 Chondrite	Bo	Δ/B	27	18
MIL 13312	20. 4 23.1	H5 Chondrite	C	Δ/B	20	10
MIL 1331/	10.3	H6 Chondrite	B		18	
MIL 13314	15	Fucrite	Δ	R/C	10	26-62
MIL 13316	0.0	CM2 Chondrite	Δ	B	1_15	20-02
MIL 13320	0.9	CK5 Chondrite	۸ ۵/Β	B	3/	2
MIL 13321	1.4	CM2 Chondrite		B	1 36	
MIL 13322	2.6	CM2 Chondrite		B	2_13	2-6
MIL 13322	2.0	CK5 Chondrite	R	B	32	2-0
MIL 13324	23	CM2 Chondrite	Bo	B	1_38	
MIL 13325	2.5	CM1 Chondrite	Δ/R	Δ/R	1-50	
MIL 13326	1.1	CM2 Chondrite	Δ/B	R	1_46	6
MIL 13320	0.7	H5 Chondrite	R/Ce	B	19	17
WIL 15527	0.7	no chonante	DICE	Б	15	17
ALH 15575	107.6	H5 Chondrite	B/C	A/B	19	17
MIL 15029	34.0	CM2 Chondrite	В	В	1-69	1
MIL 15031	237.3	CM2 Chondrite	В	B/C	1-44	23
MIL 15081	9.1	CM2 Chondrite	A/B	А	1-2	
MIL 15231	4.9	CM2 Chondrite	В	A/B	1-42	
MIL 15308	18.2	CM2 Chondrite	B/C	В	1-51	
MIL 15328	320.6	CR2 Chondrite	В	B/C	1-33	2-4

Table 2Newly Classified Meteorites Listed by Type

Achondrites

<u>Sample</u> <u>Number</u> MIL 13315	<u>Weight(g)</u> 1.5	<u>Classification</u> Eucrite	<u>Weathering</u> A	Fracturing B/C	<u>%Fa</u>	<u>%Fs</u> 26-62
MIL 13180	1.1	Ureilite	В	А	12-13	11
		Carbonace	ous Chondrite	S		
<u>Sample</u>					~ -	a (-
Number	Weight(g)	Classification	Weathering	Fracturing	<u>%Fa</u>	<u>%Fs</u>
WIL 13130	0.8	CK3-6 Chondrite	В	A	18-34	
MIL 13320	1.4	CK5 Chondrite	A/B	В	34	
MIL 13323	3.7	CK5 Chondrite	В	В	32	
MIL 13247	5.5	CK6 Chondrite	B/C	А	36	
MIL 13037	0.2	CM1 Chondrite	A/Be	А		
MIL 13063	0.2	CM1 Chondrite	A/B	A/B		
MIL 13325	1.1	CM1 Chondrite	A/B	A/B		
MIL 13065	0.1	CM2 Chondrite	A/B	А	1-5	2-7
MIL 13137	0.5	CM2 Chondrite	В	А	1-47	1-4
MIL 13169	2.0	CM2 Chondrite	Be	A/B	0-67	
MIL 13233	0.1	CM2 Chondrite	В	А	0-2	
MIL 13269	1.2	CM2 Chondrite	Ae	B/C	1-47	1-12
MIL 13316	0.9	CM2 Chondrite	А	В	1-45	2
MIL 13321	1.8	CM2 Chondrite	A/Be	В	1-36	
MIL 13322	2.6	CM2 Chondrite	A/Be	В	2-13	2-6
MIL 13324	2.3	CM2 Chondrite	Be	В	1-38	
MIL 13326	1.8	CM2 Chondrite	A/B	В	1-46	6
MIL 15029	34.0	CM2 Chondrite	В	В	1-69	1
MIL 15031	237.3	CM2 Chondrite	В	B/C	1-44	23
MIL 15081	9.1	CM2 Chondrite	A/B	А	1-2	
MIL 15231	4.9	CM2 Chondrite	В	A/B	1-42	
MIL 15308	18.2	CM2 Chondrite	B/C	В	1-51	
MIL 13214	1.5	CO3 Chondrite	B/C	В	1-28	1-2
MIL 15328	320.6	CR2 Chondrite	В	B/C	1-33	2-4
MIL 13032	0.6	CV3 Chondrite	A/B	А	1-2	1-2
MIL 13241	0.6	CV3 Chondrite	A/Be	A/B	1-2	6

Chondrites - Type 3

Sampla			51			
<u>Number</u> MIL 13248	<u>Weight(g)</u> 5.5	Classification LL3.5 Chondrite	<u>Weathering</u> B	<u>Fracturing</u> A	<u>%Fa</u> 1-37	<u>%Fs</u> 12-19
		EC	hondrites			
Sample						
Number	<u>Weight(g)</u>	Classification	Weathering	Fracturing	<u>%Fa</u>	<u>%Fs</u>
LAR 12156	59.2	EH3 Chondrite	A	A/B		0-7
LAR 12244	131.2	EH3 Chondrite	A/B	А		0-3
MIL 13152	1.8	EH3 Chondrite	B/C	A/B		0-1
MIL 13211	0.5	EH3 Chondrite	A/B	В		1-3
MIL 13226	0.7	EH3 Chondrite	A/B	A/B		0-1
LAR 12279	76.9	EL6 Chondrite	A/B	А		0-1
		St	ony Iron			
<u>Sample</u>			-			
<u>Number</u> MIL 13174	<u>Weight(g)</u> 2.6	Classification Mesosiderite	<u>Weathering</u> Be	<u>Fracturing</u> A/B	<u>%Fa</u>	<u>%Fs</u> 28-57

**Notes to Tables 1 and 2:

"Weathering" Categories:

- A: Minor rustiness; rust haloes on metal particles and rust stains along fractures are minor.
- B: Moderate rustiness; large rust haloes occur on metal particles and rust stains on internal fractures are extensive.
- C: Severe rustiness; metal particles have been mostly stained by rust throughout.
- E: Evaporite minerals visible to the naked eye.

"Fracturing" Categories:

- A: Minor cracks; few or no cracks are conspicuous to the naked eye and no cracks penetrate the entire specimen.
- B: Moderate cracks; several cracks extend across exterior surfaces and the specimen can be readily broken along the cracks.
- C: Severe cracks; specimen readily crumbles along cracks that are both extensive and abundant.

Classification of the ordinary chondrites in Table 1 & 2 was done by Energy Dispersive Spectroscopic (EDS) methods using a Scanning Electron Microscope (SEM). This can include the analysis of several olivine and pyroxene grains to determine the approximate Fayalite and Ferrosilite values of the silicates, grouping them into H, L or LL chondrites. Petrologic types are determined by optical microscopy and are assigned based on the distinctiveness of chondrule boundaries on broken surfaces of a 1-3 g chip. While this technique is suitable for general characterization and delineation of equilibrated ordinary chondrites, those undertaking detailed study of any meteorite classified by optical methods alone should use caution. It is recommended that a polished thin section be requested to accompany any chip and appropriate steps for a more detailed characterization should be undertaken by the user. (Cari Corrigan, Smithsonian Institution)

Petrographic Descriptions _

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
LAR 12156	Larkman Nunatak	23140	2.0 x 4.5 x 3.0	59.20	EH3 chondrite

Macroscopic Description: Rachel Funk

Black fusion crust covers the exterior of this enstatite chondrite, fractures and minor amounts of reddish/orange rust are visible. The interior is a dark groundmass with minor amounts of orange rust and shiny metals are visible throughout.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section shows an aggregate of chondrules (up to 1 mm), chondrule fragments, and pyroxene grains in a matrix of about 30% metal and sulfide. Chondrules contain minor abundances of olivine. Weathering is minor. Microprobe analyses show the pyroxene is Fs_{0-7} and that the Fe,Ni metal contains 3 wt. % Si. The meteorite is an EH3 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
LAR 12244	Larkman Nunatak	23296	5.5 x 4.0 x 2.5	131.2	EH3 chondrite

Macroscopic Description: Rachel Funk

80% of the exterior is covered with dark brown glossy fusion crust with minor amounts of orange rust visible. The dark gray groundmass has 1-2 mm sized gray chondrules and 1 mm sized white inclusions. Orange rust and shiny metals are visible throughout.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section shows an aggregate of chondrules (up to 1 mm), chondrule fragments, and pyroxene grains in a matrix of about 30% metal and sulfide. Chondrules contain minor abundances of olivine. Weathering is severe. Microprobe analyses show the pyroxene is Fs_{0-3} and that the Fe,Ni metal contains 3 wt. % Si. The meteorite is an EH3 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
LAR 12279	Larkman Nunatak	23999	5.0 x 4.5 x 3.0	76.9	EL6 chondrite

Macroscopic Description: Rachel Funk

The exterior of this meteorite is covered with dark brown fusion crust, some fractures and rust is visible. The interior is a dark matrix with metal and minor amounts of rust visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

Only vague traces of chondritic structure are visible in the thin section, which shows the meteorite to consist largely of prismatic or granular enstatite (grain size 0.1-0.2 mm), a considerable amount of nickel-iron, and minor amounts of sulfides and plagioclase. The meteorite is modestly weathered, with brown limonitic staining throughout the section. Microprobe analyses show that the enstatite is Fs_{0-1} ; the Fe-Ni metal contains 1.0 wt. % Si. The meteorite is an EL6 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13032	Miller Range	22690	1.2 x 1.0 x 0.5	0.595	CV3 chondrite

Macroscopic Description: Cecilia Satterwhite, Tim McCoy

The exterior has brown/black fusion crust with orange brown oxidation in areas. The meteorite exhibits a black interior with a few large white inclusions.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section exhibits large chondrules (up to 3 mm) and CAIs in a dark matrix. Olivines range from Fa_{1-2} and pyroxenes from Fs_{1-2} . The meteorite is a carbonaceous chondrite, probably a CV3.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13037	Miller Range	22692	0.7 x 0.5 x 0.1	0.164	CM1 chondrite

Macroscopic Description: Cecilia Satterwhite, Tim McCoy

Exterior has some black fusion crust and small patch of gray matrix visible on one surface. The meteorite exhibits a brown core in a rim of fusion crust.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

This section bisects the center of the main mass of this meteorite. It consists of a core (~3.5 x 1.5 mm) consisting of completely altered chondrules set in an altered matrix. Rare small sulfide grains are present. No unaltered mafic silicates remain. This core is completely rimmed by a 1-2 mm thick, highly vesicular fusion crust. The meteorite is a CM1 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13063	Miller Range	22680	0.7 x 0.7 x 0.3	0.232	CM1 chondrite

Macroscopic Description: Cecilia Satterwhite, Tim McCoy

Patches of black fusion crust are visible on the fractured exterior of this small carbonaceous chondrite. The meteorite exhibits a black interior.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of mostly small (up to 0.5 mm) completely altered chondrules set in an altered matrix with abundant carbonate. Rare small sulfide grains are present. Only one unaltered mafic silicate grain remains. The meteorite is a CM1 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13065	Miller Range	21140	0.7 x 1.0 x 0.5	0.106	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite, Tim McCoy

98% of the exterior of this carbonaceous chondrite has black fusion crust, one surface is frothy. The meteorite exhibits a black interior.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral fragments and CAIs set in a black matrix. The matrix is unusually rich in opaque minerals. The entire meteorite is rimmed by a 1.5 mm thick primary fusion crust and a much thinner secondary fusion crust. The entire meteorite may have been thermally altered and oxidized producing the abundant opaques in the interior. Olivine compositions are Fa_{1-5} , and pyroxene is Fs_{2-7} . The meteorite is possibly an atmospherically heated CM2 chondrite.

ı	
I	

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13136	Miller Range	24346	1.0 x 1.0 x 0.4	0.813	CK3-6 chondrite

Macroscopic Description: Cecilia Satterwhite

The exterior is covered with black fractured fusion crust. The interior is a gray matrix with some specks of white inclusions/chondrules.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy, Nicole Lunning

The section is composed of several clasts, including one large (~3 mm) clast that contains large (~1 mm) chondrules rimmed by fine grained sulfides and magnetite. The large clast may be a different petrologic type than its host breccia. There is also one large (1 mm) sulfide clast within the matrix. Excluding the clasts, no chondrules are present. The meteorite is moderately weathered, but extensively shock blackened. Olivines range from Fa₁₈₋₃₄. The meteorite is a CK3-6 chondrite breccia.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13137	Miller Range	22266	1.0 x 0.8 x 0.5	0.542	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite

50% of the exterior has black fractured fusion crust. The interior is a dark gray to black matrix with some oxidation.

Thin Section (.2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are $Fa_{1.47}$, orthopyroxene is $Fs_{1.4}$. Aqueous alteration of the matrix is substantial, but the chondrules are only moderately altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13152	Miller Range	21349	1.5 x 1.0 x 0.7	1.823	EH3 chondrite

Macroscopic Description: Cecilia Satterwhite

The brown/black fusion crust on the exterior has oxidation and rusty areas. The matrix is mostly weathered and rusty with patches of dark gray areas visible, small inclusions/chondrules are present.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section shows an aggregate of chondrules (up to 1 mm), chondrule fragments, and pyroxene grains in a matrix of about 30% metal and sulfide. Chondrules contain minor abundances of olivine. Weathering is moderate. Microprobe analyses show the pyroxene is Fs_{0-1} and that the Fe,Ni metal contains 3 wt. % Si. The meteorite is an EH3 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13169	Miller Range	23775	1.0 x 2.2 x 0.5	2.01	CM2 chondrite

Macroscopic Description: Rachel Funk

Jet black fusion crust covers 40% of the exterior of this carbonaceous chondrite. Minor amounts of evaporites are visible and the exposed interior is black in color. The interior is a black matrix with white inclusions.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy, Nicole Lunning

The section consists of abundant small (up to 1 mm) chondrules, and mineral fragments in a dark matrix. Rare sulfides occur within the matrix. Olivine ranges in composition from Fa_{0-67} , with two clusters with ranges of Fa_{27-67} and of Fa_{0-2} . The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13174	Miller Range	22495	0.7 x 2.0 x 0.5	2.61	Mesosiderite

Macroscopic Description: Rachel Funk

90% black/brown fusion crust with minor evaporites and rust are visible on the exterior surface. One fracture penetrates the surface. The black matrix has orange rust present and metal is visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy, Nicole Lunning

This meteorite is dominated by orthopyroxene, clinopyroxene and plagioclase grains in a matrix of approximately 30% metal. Minor sulfide and chromite grains are present with sulfide often occurring as dispersed, small grains surrounding larger metal grains. Grain sizes are up to 1 mm. Pyroxenes are zoned orthopyroxene, $Fs_{28-57}Wo_{2-11}$, and exsolved clinopyroxene with augite $Fs_{25-27}Wo_{42-45}$. Feldspars are An_{88-91} . This small meteorite is probably a metal rich clast from a mesosiderite, although metal rich eucrites are known.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13180	Miller Range	21725	1.0 x 1.0 x 0.5	1.139	Ureilite

Macroscopic Description: Cecilia Satterwhite

98% of the exterior has black/brown fusion crust. The dark gray to black matrix has metal and some oxidation.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of an aggregate of large olivine and pyroxene grains up to 2 mm across. Individual olivine grains are rimmed by carbon-rich material containing traces of metal. Olivine compositions are nearly homogeneous at Fa_{12-13} . Pigeonite compositions are Fs_{11} , Wo₆ and augite compositions are $Fs_{1-2}Wo_{42}$. The meteorite is a ureilite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13211	Miller Range	21445	0.7 x 0.7 x 0.5	0.470	EH3 chondrite

Macroscopic Description: Rachel Funk, Tim McCoy

50% of the exterior surface has black/brown fusion crust with rust spots. The exposed surface is a brown/black color. The meteorite exhibits a black interior.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section shows an aggregate of chondrules (up to 1 mm), chondrule fragments, and pyroxene grains in a matrix of about 30% metal and sulfide. Chondrules contain minor abundances of olivine. Weathering is moderate. Microprobe analyses show the pyroxene is Fs_{1-3} and that the Fe,Ni metal contains 3 wt. % Si. The meteorite is an EH3 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13214	Miller Range	21436	1.1 x 1.0 x 0.6	1.50	CO3 chondrite

Macroscopic Description: Rachel Funk

Black fusion crust covers 80% of the exterior surface. The interior is a black matrix with orange rust, metal visible and beige inclusions.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of abundant small (up to 1 mm) chondrules, chondrule fragments and mineral grains in a dark matrix. Metal and sulfide occur within and rimming the chondrules. Olivine ranges in composition from Fa_{1-28} , with a continuous range of intermediate compositions and a slight peak at Fa_{1-3} with one analysis of Fa_{28} . Pyroxene analyses are Fs_{1-2} . The matrix appears to consist largely of Fe-rich olivine. Terrestrial weathering effects are extensive. The meteorite is a CO3 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13226	Miller Range	24319	0.8 x 0.7 X 0.6	0.663	EH3 chondrite

<u>Macroscopic Description: Cecilia Satterwhite, Tim McCoy</u> 98% of the exterior has brown fractured fusion crust with oxidation. The meteorite exhibits a black interior.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section shows an aggregate of chondrules (up to 1 mm), chondrule fragments, and pyroxene grains in a matrix of about 30% metal and sulfide. Weathering is severe. Microprobe analyses show the pyroxene is $Fs_{0.1}$ and that the Fe,Ni metal contains 2.5 wt. % Si. The meteorite is an EH3 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13233	Miller Range	23723	0.6 x 0.5 x 0.2	0.129	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite, Tim McCoy

98% black fusion crust covers the exterior surface. The meteorite exhibits a black interior.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy, Nicole Lunning

The section consists of abundant small (up to 1 mm) chondrules, and mineral fragments in a dark matrix. Rare sulfides occur within the matrix. Olivine ranges in composition from $Fa_{0,2}$. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13241	Miller Range	24344	0.9 x 0.7 x 0.4	0.642	CV3 chondrite

Macroscopic Description: Cecilia Satterwhite, Tim McCoy

50% of the exterior surface has black fusion crust, areas without fusion crust is weathered brown. The meteorite exhibits a black interior with a few large white inclusions.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy, Nicole Lunning

This very small, extensively altered meteorite exhibits large chondrules and CAIs in a dark matrix. Olivines range from Fa_{1-2} and a pyroxene is Fs_6 . The meteorite is a carbonaceous chondrite, probably a CV3, although the small size and the extensive terrestrial alteration make the classification uncertain.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13247	Miller Range	24394	2.3 x 1.7 x 0.6	5.548	CK6 chondrite

Macroscopic Description: Cecilia Satterwhite

Black/brown fusion crust covers 70% of the exterior surface, one surface is frothy. Areas without fusion crust are rusty brown. The interior is a gray matrix with heavy oxidation and rust in some areas.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few relict chondrules in a matrix of finer-grained silicates, sulfides and magnetite. The meteorite is only slightly weathered. Silicates are homogeneous. Olivine is Fa_{36} , clinopyroxene at $Fs_{10}Wo_{50}$. The meteorite appears to be a CK6 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13248	Miller Range	24343	2.4 x 1.3 x 0.6	5.535	LL3.5 chondrite

Macroscopic Description: Cecilia Satterwhite

Black/brown fusion crust is present on 85% of the surface with visible chondrules and brown weathered areas. The dark gray to brown matrix has oxidation scattered throughout and abundant inclusions/chondrules of various colors and sizes are visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section exhibits numerous large, well-defined chondrules (up to 2 mm) in a black matrix of fine-grained silicates, metal and troilite. Weak shock effects are present. Polysynthetically twinned pyroxene is extremely abundant. The meteorite is moderately weathered. Silicates are unequilibrated; olivines range from Fa_{1-37} and pyroxenes from Fs_{12-10} . The meteorite is an LL3 chondrite (estimated subtype 3.5).

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13269	Miller Range	22295	0.9 x 1.2 x 0.8	1.22	CM2 chondrite

Macroscopic Description: Rachel Funk

Black fractured fusion crust covers 30% of the exterior surface. Some fractures penetrate the interior and minor evaporites are visible. The interior has a black matrix with white and gray inclusions/chondrules.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are $Fa_{1.47}$, orthopyroxene is $Fs_{1.12}$. Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13315	Miller Range	21331	1.5 x 1.0 x 0.9	1.46	Eucrite

Macroscopic Description: Rachel Funk

35% black fusion crust is present on the exterior surface. The exposed interior is gray with black and white minerals. The black fine grained interior matrix has white grains visible and minor yellow inclusions.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

This meteorite is dominated by coarse-grained (~1 mm average size) pyroxene and feldspar grains. Two finegrained (cataclastic) zones cross-cut the specimen. Mineral compositions are homogeneous with orthopyroxene ($Fs_{62}Wo_2$), with lamellae of augite ($Fs_{26}Wo_{44}$), and plagioclase ($An_{86}Or_1$). The Fe/Mn ratio of the pyroxene is ~30. The meteorite is a eucrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13316	Miller Range	21430	1.2 x 1.5 x 0.5	0.93	CM2 chondrite

Macroscopic Description: Rachel Funk

Black fractured fusion crust on 35% of the exterior surface. The interior is a black matrix with 1 mm sized gray inclusions visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are $Fa_{1.45}$, orthopyroxene is Fs_2 . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13320	Miller Range	21348	1.0 x 1.0 x 0.6	1.44	CK5 chondrite

Macroscopic Description: Rachel Funk

25% of the exterior surface has black fractured fusion crust. The exposed surface is black and fractured. The dark gray cloudy matrix has black inclusions visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy, Nicole Lunning

The section consists of large (up to 2 mm) chondrules in a matrix of finer-grained silicates, sulfides and abundant magnetite grains. The meteorite is little weathered, but extensively shock blackened. Olivine is homogeneous and Fa_{34} The meteorite is a CK5 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13321	Miller Range	21734	1.5 x 1.5 x 1.1	1.82	CM2 chondrite

Macroscopic Description: Rachel Funk

50% of the exterior is covered with black fractured fusion crust. The exposed surface is black and fractured and minor evaporites are visible. The black matrix has white and gray chondrules/inclusions.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are Fa_{1-36} . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13322	Miller Range	21315	1.8 x 1.5 x 1.1	2.60	CM2 chondrite

Macroscopic Description: Rachel Funk

Black fractured fusion crust covers 80% of the exterior surface, evaporites are present. The exposed surface is black with black and gray chondrules and inclusions. The black matrix has gray and beige chondrules/inclusions visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are Fa_{2-13} , orthopyroxene is Fs_{2-6} . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13323	Miller Range	21724	1.1 x 1.9 x 0.9	3.66	CK5 chondrite

Macroscopic Description: Rachel Funk

Exterior has black fractured fusion crust (15%). Exposed interior is black and fractured. The interior is a cloudy gray that has a crumbly texture.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy, Nicole Lunning

The section consists of large (up to 2 mm) chondrules in a matrix of finer-grained silicates, sulfides and abundant magnetite grains. The meteorite is moderately weathered, but extensively shock blackened. Olivine is homogeneous and Fa_{32} The meteorite is a CK5 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13324	Miller Range	21739	1.5 x 1.4 x 0.9	2.33	CM2 chondrite

Macroscopic Description: Rachel Funk

Black fractured fusion crust on 50% of the exterior surface with minor amounts of evaporites. Exposed surface is black with fractures. The interior is a black matrix with minor amounts of orange rust.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are Fa_{1-38} . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13325	Miller Range	21713	0.9 x 1.2 x 1.1	1.13	CM1 chondrite

Macroscopic Description: Rachel Funk

5% of the exterior has black fusion crust. Exposed surface is black. The black interior has gray chondrules/ inclusions and minor orange rust.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy, Nicole Lunning

The section consists of mostly small (up to 1 mm) completely altered chondrules set in an altered matrix with abundant carbonate. Rare small sulfide grains are present. No unaltered mafic silicates remain. The meteorite is a CM1 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 13326	Miller Range	23777	1.4 x 1.5 x 0.6	1.84	CM2 chondrite

Macroscopic Description: Rachel Funk

No fusion crust on the exterior. The exposed surface is black with gray chondrules/inclusions visible and a vesicular texture. The interior is a black matrix with gray chondrules and inclusions.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are Fa_{1-46} , orthopyroxene is Fs_6 . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 15029	Miller Range	24100	4.5 x 3.0 x 3.0	34.01	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite

The exterior surface has weathered black patches of fusion crust. Areas without fusion crust are brown in color with rusty areas. Some dark gray to black matrix is exposed and inclusions and chondrules are visible. Some areas have vugs. The interior is a fine grained black matrix with some oxidation; small white and rusty inclusions are visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are Fa_{1-69} , orthopyroxene is Fs_1 . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 15031	Miller Range	24161	7.0 x 5.0 x 5.0	237.3	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite

Brown/black fractured patchy fusion crust covers 60% of this meteorite's exterior surface; evaporites are heavy in some areas; fractures penetrate the surface; areas w/o fusion crust are black. The interior is a black matrix with heavy evaporite deposits; some light gray to white inclusions are visible.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are $Fa_{1.44}$, orthopyroxene is Fs_{23} . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 15081	Miller Range	24166	3.3 x 2.0 x 1.5	9.105	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite

90% of the exterior has brown/black fusion crust; frothy and pitted in areas. The matrix is black, fine grained with tiny specks of light colored inclusions, a few are weathered and rusty.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are $Fa_{1.2}$. Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 15231	Miller Range	23090	2.4 x 1.5 x 1.5	4.935	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite

80% of the exterior surface has black fractured fusion crust with small deposits of evaporites; areas without fusion crust are a brownish color. The interior is a fine grained black matrix with small white inclusions; oxidation is visible and heavy along the rim.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are $Fa_{1.42}$. Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 15308	Miller Range	23092	3.5 x 2.3 x 2.0	18.176	CM2 chondrite

Macroscopic Description: Cecilia Satterwhite

The exterior surface has 80% black fractured patchy fusion; areas without fusion crust are black with some evaporites; some gray and weathered inclusions/chondrules are visible. The interior is a black matrix with small light colored inclusions/chondrules, some are weathered. A very large evaporite deposit is present especially along the fracture where sample was broken.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy

The section consists of a few small (up to 0.5 mm) chondrules, mineral grains and CAIs set in a black matrix. Rare metal and sulfide grains are present. Olivine compositions are Fa_{1-51} . Aqueous alteration of the matrix is substantial, but the chondrules are only modestly altered. The meteorite is a CM2 chondrite.

Sample No.:	Location:	Field No.:	Dimensions (cm):	Weight (g):	Classification:
MIL 15328	Miller Range	23047	7.0 x 5.5 x 5.5	320.6	CR2 chondrite

Macroscopic Description: Cecilia Satterwhite

90% black fractured fusion crust covers the exterior surface; abundant fractures penetrate the surface; light colored and weathered inclusions/chondrules are visible on the exterior surface.

The interior is a dark gray to black matrix with abundant inclusions/chondrules of various sizes and colors, some are weathered; the meteorite is heavily weathered in areas along the fractures, has a crumbly texture and some rusty areas.

Thin Section (,2) Description: Cari Corrigan, Tim McCoy, Nicole Lunning

The section exhibits a range of chondrule sizes (500 micron to 2 mm), that are well-defined and metal-rich along with CAIs in a dark matrix of FeO-rich phyllosilicate. Polysynthetically twinned pyroxene is abundant in chondrules. Silicates are unequilibrated; olivines range from Fa_{1-33} , with most Fa_{0-2} , and pyroxenes from $Fs_{2-4}Wo_1$. The meteorite is probably a CR2 chondrite.

Sample Request Guidelines -

The Meteorite Working Group (MWG), is a peer-review committee which meets twice a year to guide the collection, curation, allocation, and distribution of the U.S. collection of Antarctic meteorites. The deadline for submitting a request is 2 weeks prior to the scheduled meeting.

Requests that are received by the MWG secretary by **March 10, 2017 deadline** will be reviewed at the MWG meeting on **March 25-26 in Houston, TX** Requests that are received after the deadline may be delayed for review until MWG meets again in the Fall of 2017. Please submit your requests on time. Questions pertaining to sample requests can be directed to the MWG secretary by e-mail, fax or phone.

Requests for samples are welcomed from research scientists of all countries, regardless of their current state of funding for meteorite studies. Graduate student requests should have a supervising scientist listed to confirm access to facilities for analysis. All sample requests will be reviewed in a timely manner. Sample requests that do not meet the curatorial allocation guidelines will be reviewed by the Meteorite Working Group (MWG). Issuance of samples does not imply a commitment by any agency to fund the proposed research. Requests for financial support must be submitted separately to an appropriate funding agency. As a matter of policy, U.S. Antarctic meteorites are the property of the National Science Foundation, and all allocations are subject to recall.

Samples can be requested from any meteorite that has been made available through announcement in any issue of the *Antarctic Meteorite Newsletter* (beginning with 1(1) in June, 1978). Many of the meteorites have also been described in five *Smithsonian Contributions to the* *Earth Sciences*: Nos. 23, 24, 26, 28, and 30. Tables containing all classified meteorites as of August 2006 have been published in the Meteoritical Bulletins and *Meteoritics* and *Meteoritics* and *Meteoritics* and *Planetary Science*.

They are also available online at:

http://www.meteoriticalsociety.org/ simple_template.cfm?code= pub_bulletin

The most current listing is found online at:

http://curator.jsc.nasa.gov/antmet/ us_clctn.cfm

All sample requests should be made electronically using the form at:

http://curator.jsc.nasa.gov/ antmet/requests.cfm

The purpose of the sample request form is to obtain all information MWG needs prior to their deliberations to make an informed decision on the request. Please use this form if possible.

The preferred method of request transmittal is via e-mail. Please send requests and attachments to:

JSC-ARES-MeteoriteRequest@nasa.gov Type **MWG Request** in the e-mail subject line. Please note that the form has signature blocks. The signature blocks should only be used if the form is sent via Fax or mail.

Each request should accurately refer to meteorite samples by their respective identification numbers and should provide detailed scientific justification for proposed research. Specific requirements for samples, such as sizes or weights, particular locations (if applicable) within individual specimens, or special handling or shipping procedures should be explained in each request. Some meteorites are small, of rare type, or are considered special because of unusual properties. Therefore, it is very important that all requests specify both the optimum amount of material needed for the study and the minimum amount of material that can be used. Requests for thin sections that will be used in destructive procedures such as ion probe, laser ablation, etch, or repolishing must be stated explicitly.

Consortium requests should list the members in the consortium. All necessary information should be typed on the electronic form, although informative attachments (reprints of publication that explain rationale, flow diagrams for analyses, etc.) are welcome.

Antarctic Meteorite Laboratory Contact Numbers

Please submit request to: JSC-ARES-MeteoriteRequest@nasa.gov

Kevin Righter Curator Mail code X12 NASA Johnson Space Center Houston, Texas 77058 (281) 483-5125 kevin.righter-1@nasa.gov

Cecilia Satterwhite Lab Manager/MWG Secretary Mail code X12 NASA Johnson Space Center Houston, Texas 77058 (281) 483-6776 cecilia.e.satterwhite@nasa.gov

FAX: 281-483-5347

Meteorites On-Line_

Several meteorite web sites are available to provide information on meteorites from Antarctica and elsewhere in the world. Some specialize in information on martian meteorites and on possible life on Mars. Here is a general listing of ones we have found. We have not included sites focused on selling meteorites even though some of them have general information. Please contribute information on other sites so we can update the list.

JSC Curator, Antarctic meteorites JSC Curator, HED Compendium JSC Curator, Lunar Meteorite Compendium JSC Curator, Mars Meteorite Compendium ANSMET Smithsonian Institution Lunar Planetary Institute NIPR Antarctic meteorites Meteoritical Bulletin online Database Museo Nazionale dell'Antartide BMNH general meteorites

Chinese Antarctic meteorite collection UHI planetary science discoveries Meteoritical Society Meteoritics and Planetary Science Meteorite! Magazine Geochemical Society Washington Univ. Lunar Meteorite Washington Univ. "meteor-wrong" Portland State Univ. Meteorite Lab Northern Arizona University Martian Meteorites

http://curator.jsc.nasa.gov/antmet/ http://curator.jsc.nasa.gov/antmet/hed/ http://curator.jsc.nasa.gov/antmet/lmc/ http://curator.jsc.nasa.gov/antmet/mmc/ http://caslabs.case.edu/ansmet/ http://mineralsciences.si.edu/ http://www.lpi.usra.edu http://www.nipr.ac.jp/ http://www.lpi.usra.edu/meteor/metbull.php http://www.mna.it/collezioni/catalogo-meteoriti-sede-di-siena http://www.nhm.ac.uk/our-science/departments-and-staff/earthsciences/mineral-and-planetary-sciences.html http://birds.chinare.org.cn/en/resourceList/ http://www.psrd.hawaii.edu/index.html http://www.meteoriticalsociety.org/ http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1945-5100

http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1945-51 http://www.meteoritemag.org/ http://www.geochemsoc.org http://meteorites.wustl.edu/lunar/moon_meteorites.htm http://meteorites.wustl.edu/meteorwrongs/meteorwrongs.htm http://meteorites.pdx.edu/ http://www4.nau.edu/meteorite/ http://www.imca.cc/mars/martian-meteorites.htm

Other Websites of Interest

OSIRIS-REx Mars Exploration Rovers Near Earth Asteroid Rendezvous Stardust Mission Genesis Mission ARES Astromaterials Curation http://osiris-rex.lpl.arizona.edu/ http://mars.jpl.nasa.gov http://marsrovers.jpl.nasa.gov/home/ http://near.jhuapl.edu/ http://stardust.jpl.nasa.gov http://genesismission.jpl.nasa.gov http://ares.jsc.nasa.gov/ http://curator.jsc.nasa.gov/