Lafayette - 800 grams Nakhlite

Figure 1. Photograph showing fine ablation features of fusion crust on Lafayette meteorite. Sample is shaped like a truncated cone. This is a view of the top of the cone. Sample is 4-5 centimeters across. Photograph from Field Museum Natural History, Chicago, number 62913.

Introduction

According to Graham *et al.* (1985), "*a mass of about* 800 grams was noticed by Farrington in 1931 in the geological collections in Purdue University in Lafayette Indiana." It was first described by Nininger (1935) and Mason (1962). Lafayette is very similar to the Nakhla and Governador Valadares meteorites, but apparently distinct from them (Berkley *et al.* 1980). Lafayette is a single stone with a fusion crust showing well-developed flow features from ablation in the Earth's atmosphere (figures 1,2,3). The specimen is shaped like a rounded cone with a blunt bottom end. It was apparently oriented during entry into the Earth's atmosphere. Note that the fine ablation features seen on Lafayette have not been reported on any of the Nakhla specimens.

Karlsson *et al.* (1992) found that Lafayette contained the most extra-terrestrial water of any Martian meteorite and Treiman *et al.* (1993) reported that it contained the most alteration material. Kerridge (1988), Watson *et al.* (1994) and Leshin *et al.* (1996) found

Figure 2. Photograph of bottom surface of Lafayette meteorite. Photograph from Field Museum Natural History, Chicago, number 62918.

Figure 3. Side view of Lafayette. Photograph from Field Museum Natural History, Chicago, number 62917.

that the water released during stepwise heating of Lafayette was enriched in deuterium. The alteration assemblages in Lafayette continue to be an active field of research, because it has been shown that the alteration in Lafayette occurred on Mars.

Lafayette is 1.32 b.y. old with exposure to cosmic rays for 11 m.y.

Figure 4. Photomicrograph of thin section of Lafayette meteorite. Field of view 2.2 mm. Sample #1505-3 from the Smithsonian.

Petrography

The petrography of the Lafayette meteorite has been described by Bunch and Reid (1975), Reid and Bunch (1975), Boctor *et al.* (1976), Berkley *et al.* (1980), Harvey and McSween (1992b) and Treiman *et al.* (1993). Treiman *et al.* (1993) describe Lafayette as a cumulate clinopyroxenite where the cumulus material is represented as subhedral augite and olivine grains (figure 4). The elongate pyroxenes in the nakhlites are weekly aligned (Berkley *et al.* 1980). Among the cumulus grains is intercumulus material (mesostasis) consisting of plagioclase, orthopyroxene, pigeonite, alkali feldspar, Ti-magnetite, ilmenite, pyrite, silica-glass and minor phases.

Two pyroxene geothermometry for Lafayette indicates temperatures around 950°C, suggesting subsolidus

equilibration (Harvey and McSween 1992b). However, the Fe/Mg ratio of the olivine shows that it is out of equilibrium with the pyroxene.

Post-magmatic hydrous alteration material is apparent in hand-specimen and thin section as rusty red-orange to black veins, staining and intergranular films (Treiman *et al.* 1993). Olivine is the most altered, but similar staining occurs in pyroxene and throughout the sample (figure 5).

The Lafayette meteorite has been altered in a saline solution, as was Nakhla (Vicenzi and Eiler 1998; Greenwood *et al.* 1998; Bridges and Grady 2000) (see section on "Extra-terrestrial Weathering").

Mineral Mode (from Lentz et al. 1999)								
Olivine	16.6%	18.6	7.4	20				
Pyroxene	74.4	70.4	84	69.3				
Mesostasis	9	11	8.6	10.7				

Figure 5. Photomicrograph of thin section of Lafayette showing "iddingsite" alteration along a fracture in olivine.

Mineral Chemistry

Olivine: As is the case for Nakhla, the olivine (Fo₃₅) in Lafayette has higher Fe/Mg than that of coexisting pyroxene. A careful study of olivine zoning by Harvey and McSween (1992b) noted that olivine in Lafayette has relatively homogeneous Fe, Mg composition, indicating that it re-equilibrated with the intercumulus liquid during cooling. Lentz *et al.* (1999) also give analyses of olivine. Smith *et al.* (1983) determined high Ni and Ca contents in olivine from Lafayette. However, Mikouchi and Miyamoto (1997) noted that the trace Ca contents of olivine in Lafayette (~0.2%) was less than that in olivine from Nakhla or Governador Valadares (~0.5%).

Orthopyroxene: Lafayette has poikilitic grains of orthopyroxene that formed from reaction of olivine with an evolving intercumulus liquid (Harvey and McSween 1992b). The orthopyroxene is homogeneous in composition. Orthopyroxene is a minor component, however.

Clinopyroxene: The major mineral is augite $(En_{39}Fs_{22}Wo_{39})$ with little compositional zoning (Boctor *et al.* 1976; Harvey and McSween 1992b; Lentz *et al.* 1999) (figure 6). Mikouchi and Miyamoto (1997) found that the composition of pyroxene overgrowth in Lafayette is more Mg-rich and Ca-poor than in Nakhla or Governador Valadares. Lentz *et al.* (2002) reported that Li, Be and B increased in concentration from pyroxene core to rim.

Figure 6. Pyroxene and olivine composition diagram for Lafayette meteorite. Data compiled from Boctor et al. (1976) and Harvey and McSween (1991).

Plagioclase: Bunch and Reid (1975) give the composition of plagioclase as $An_{32}Ab_{65}Or_6$. Lentz *et al.* (2002) determined Li, Be and B in plagioclase.

K-feldspar: Potassium feldspar is found in the mesostasis ($Or_{76}Ab_{21}An_3$).

Iddingsite: Reid and Bunch (1975) noted the fibrous habit of the alteration in Nakhla and Lafayette and reasoned that it might be "pre-terrestrial, low temperature, alteration." Iddingsite is a fine-grained intergrowth of smectite clay, ferrihydrite and ionic salt minerals (Boctor et al. (1976), Treiman et al. (1993), Romanek et al. (1996) and Treiman and Lindstrom (1997). In particular, Treiman et al. showed that the smectite alteration products were indeed formed in a pre-terrestrial environment (i.e. on Mars!). Iddingsite is more abundant in Lafayette than in Nakhla (Karlsson et al. 1992; Treiman et al. 1993; Romanek et al. 1996; Bunch and Reid, 1975)(see also "Oxygen Isotopes" below). Treiman and Lindstrom (1997), Bridges and Grady (2000) and Newsom et al. (2001) have analyzed iddingsite from Lafayette (table 2). Vincenzi and Eiler (1998) obtained high spatial resolution chemical imaging of the veinlets of "iddingsite" and noted distinct mineral phases with intricate banding. Ar age dating and Xe, Kr isotopic analysis of iddingsite are consistent with alteration on Mars (Swindle et al. 2000). Similar alteration in Y000749, has also been reported by Treiman and Goodrich (2002).

reference weight SiO2 TiO2	eSchmit	tt63	Haskir	n66	Laul72		Schmitt 889 mg	t72 J	Boctor7 fusion c 46.9 0.33	6 rust (d) (d)	Podesek73	Treiman86	Nichipor	uk67
Al2O3 FeO MnO CaO MgO							23.03 0.5	(a) (a)	1.55 22.7 0.79 13.4 12.9	(d) (d) (d) (d) (d)	14.13		0.39 9.08	(f) (f)
Na2O K2O P2O5 sum	0.12	(a)					0.43	(a)	0.36 0.09	(d) (d)	0.113			
Li ppm Sc	77.6	(a)	54	(a)			48	(a)						
Cr Co							1720 44	(a) (a)					37	(f)
Ni Cu Zu					74		12	(a)				94	106	(†)
Zn Ga					71	(D)						72		
Ge As					0.000	(h)						2.48		
Se Br Ph					0.066	(D)						0.05		
Sr v	11	(2)	3.2	(2)	2.4	(0)						5.25		
Zr	7.7	(α)	0.2	(α)										
Mo Pd pph												~17		
Ag ppb					58 92	(b) (b)						98		
In ppb Sb ppb Te ppb					20.3	(b) (b)						20.1 103 <5.2		
Cs ppm Ba					0.288	(b)						0.353		
La Ce	1.76 5.48	(a) (a)	1.8 5.5	(a) (a)								4.21		
Pr Nd Sm	0.8 3.35 0.85	(a) (a)	0.8 3.4 0.85	(a) (a)								3.12		
Eu Gd	0.03	(a) (a)	0.00	(a) (a)								0.188		
Tb Dy Ho Er Tm	0.12 0.89 0.146 0.4 0.057	(a) (a) (a) (a) (a)	0.12 0.89 0.146 0.4 0.047	(a) (a) (a) (a) (a)								0.104		
Yb Lu Hf Ta	0.36 0.051	(a) (a)	0.22 0.044	(a) (a)								0.307 0.055		
Re ppb Os ppb Ir ppb Au ppb TI ppb Bi ppb					0.13 21 7.2 5.64	(b) (b) (b) (b)						0.028 <0.6 0.052 66.2 6.81 5		
Th ppm												0 044		

Table 1a. Chemical composition of Lafayette.

U ppm 0.044 technique: (a) INAA, (b) RNAA, (c) IDMS, (d) elec. Probe, (e) XRF, (f) emission spec.

reference weight SiO2 TiO2	Mittlefehldt 40 mg	97	Wang 98		Lodders 98 averages 46.9 0.42	Dreibus 03
Al2O3 FeO MpO	21.9	(a)			2.47 21.6	20.13
CaO MaO	14.3	(a)			0.5 13.4 12.0	13.2
Na2O K2O P2O5 sum	0.497	(a)			0.4 0.11 0.45 99.15	0.427
Li ppm					65	3.9
Sc V Cr	53.6	(a)			55 58 169 1280	51.1
Co Ni			29	(b)	43 96	45.4 90
Cu Zn			70.9	(b)	12 78	79
Ga Ge			3.3	(b)	3 2.5	3.5
Se			0.072	(b)	< 150 0.07	0.50
Rb			2.06	(b)	2.8 75	3.3
Y Zr					4.4	80
Zi Nb					9.4 1.46	
Mo Pd ppb					1.7	
Ag ppb Cd ppb			17 83.4	(b) (b)	58 95	
In ppb Sb ppb			21.5 12	(b) (b)	20	
Te ppb Cs ppm			3.1 0.148	(b) (b)	<5.2 320	0.32
Ba La					27 1.86	23 2
Ce Pr	5.6	(a)			4.82 0.8	5.27
Nd Sm	0.83	(a)			3.09 0.84	3.2 0.794
Eu	0.25	(a)			0.22	0.238
Tb	0.13	(a)			0.12	0.12
Ho Fr					0.17	0.2
Tm	0.00	(-)			0.057	0.445
Lu	0.39	(a) (a)	Lee 97	<i>.</i> .	0.33 0.052	0.445
Hf Ta	0.34 0.1	(a) (a)	0.2801	(c)	0.28 80	0.27 0.098
W ppb Re ppb Os ppb			151.2	(c)	400 0.03 0.6	200
Ir ppb Au ppb TI ppb	2.9	(a)	2.85 4.74	(b) (b)	0.09 7	3.4
Bi ppb Th ppm	0.21	(a)	1.1	(b)	5.3 0.15	0.19
U ppm technique:	(a) INAA, (t) RI	0.0653 VAA, (c) II	(b) DMS	0.046	0.043

Table 1b. Composition of Lafayette (continued).

Martian Meteorite Compendium C Meyer 2012

reference rock SiO2 TiO2 Al2O3 FeO MnO CaO MgO Na2O K2O P2O5 sum	Bunch 75 Lafayette 42.9 5.5 28.2 0.28 0.65 8.7 0.13 0.8 87.16	Bunch 75 Nakhla 43.6 5.8 27.5 0.37 0.73 9.4 0.21 1.1	Boctor 76 Lafayette 43.7 <0.01 4.29 26.8 1.35 10.2 0.17 0.82	Treiman 93 Lafayette 49.1 0.01 4.77 29.01 0.48 0.7 13.9 0.3 0.41 0.09 98.77	Treiman 97 Lafayette 29 2 0.3 0.7	Gillet 2002 NWA817 46.51 0.03 2.26 28.42 0.28 0.14 7.56 0.06 0.42 86	Gooding 91 Nakhla 40.2 0.7 34.1 0.63 1.14 6.82 1.16 0.6 0.06 85.65	Treiman 2002 Y000749 49.08 0.02 3.49 28.75 0.15 0.45 7.49 0.13 0.55 0.15 90.26	52.24 0.03 3.12 30.03 0.31 0.46 3.99 0.11 0.29 0.26 90.84
Sc ppm Cr Co Zn As Br Rb Sr Cs Ba La Ce Sm Eu Tb Yb Lu Hf W ppb Ir ppb Au ppb Th ppm					0.4 5 55 160 1 9 40 250 20 150 <0.1 <1 0.04 <0.2 <0.2 <0.2 <0.2 <0.2 <0.3 1000 <8 <8 <0.2				

Table 2. Iddingsite (may be mixtures).

Cl-apatite: Crozaz (1979) studied the U and Th distribution in Lafayette and determined the Th/U ratio in small grains (30 microns) of Cl-apatite. Bunch and Reid (1975) reported fluor-chlorapatite (Cl=4%, F=1.6%). Bridges and Grady (2000) give a trace element analyses of Cl-apatite.

Titaniferous magnetite: Ti-rich magnetite in Lafayette has exsolved ilmenite lamellae (Boctor *et al.* 1976). See also photomicrograph and analysis in Bunch and Reid (1975).

Glass: Interstitial glass has been analyzed by Berkley *et al.* (1980).

Sulfides: Bunch and Reid (1975) reported both troilite and "stoichiometric" pyrite. The composition of pyrite is given in Boctor *et al.* (1976). Two small grains of chalcopyrite were reported by Bunch and Reid (1975) (Cu=33%). Greenwood *et al.* (1998) report that marcasite is the main sulfide now found in Lafayette. Sulfides in Nakhlites were carefully studied by Chevrier et al. (2011).

Carbonate: Vicenzi and Eiler (1998) have found that fine veinlets of siderite in Lafayette have the same heavy isotopic ratio as those in Nakhla. Bridges and Grady (2000) report that the siderite in Lafayette is 35% calcite and 6.5% rhodochrosite. They also give trace-element analyses for 5 siderite grains from Lafayette.

Whole-rock Composition

The major element composition of Lafayette is similar to Nakhla. Schmitt and Smith (1963) and Haskin *et al.* (1966) first reported REE analyses of Nakhla and Lafayette and recognized that they were generally similar in compositional patterns to terrestrial basalts (table 1). However, already in the 1960s, they noted the difference in Sc contents between these meteorites and terrestrial basalts.

Halogens (in ppm)	F	Cl	Br	Ι	S
Gibson <i>et al.</i> (1985)					420
					390
Sawyer <i>et al.</i> (2000)	57	147			477
	50	113			370
Dreibus et al. (1999)	74	100	0.59	.054	340
Dreibus et al. (2003)	74	101	0.59	.054	

Boctor *et al.* (1976) reported the analysis of the fusion crust. Gibson *et al.* (1985), Dreibus *et al.* (1999), Sawyer *et al.* (2000) and Wang *et al.* (1998) have determined trace elements.

Karlsson *et al.* (1992) reported a total of 0.387 wt. % H_2O in Lafayette. At least some of this is extraterrestrial weathering, as evidenced by the isotopic ratios. Watson *et al.* (1994) also found high water content (0.38 wt. %) for Nakhla.

Lindstrom *et al.* (1996) and Treiman and Lindstrom (1997) have analyzed the "iddingsite" from Lafayette for trace elements (table 2).

Radiogenic Isotopes

Using ⁴He and ⁴⁰Ar, Ganapathy and Anders (1969) calculated "gas retention ages" of 0.83 b.y. and 1.1 ± 0.3 b.y. respectively for Lafayette. Podosek (1973) and Podosek and Huneke (1973) determined the age

Figure 7. Argon plateau diagram for Lafayette and Nakhla meteorites from Podosek (1973).

of Lafayette by the ³⁹Ar/⁴⁰Ar plateau technique (1.33 \pm 0.03 b.y.), but were hesitant to conclude that this was the crystallization age (figure 7). Shih *et al.* (1998) determined a Rb-Sr age of 1.27 \pm 0.07 b.y. (I_{Sr} = 0.70260 \pm 14) and a Sm-Nd age of 1.32 \pm 0.05 b.y. (figures 8 and 9).

Swindle *et al.* (1997) have attempted to date the "iddingsite" and reported "*K-Ar ages of a few hundred million years*" (figure 11). Swindle *et al.* (2000) reported K-Ar ages that ranged from zero to 670 m.y. Shih *et al.* (1998) determined a Rb-Sr age of about 700 m.y. using carefully leached samples containing "iddingsite" (figure 11). Using U-Pb, Chen and Wasserburg (1986b) were the first to note something peculiar about the "brownies" in Nakhla.

Cosmogenic Isotopes and Exposure Ages

Using ³He, ²¹Ne and ³⁸Ar, Ganapathy and Anders (1969) calculated an average cosmic-ray exposure age of 9.8 Ma for Lafayette. Podosek (1973) determined 6.5 m.y. as the cosmic-ray exposure, but Bogard *et al.* (1984b) calculated ~11 m.y. cosmic-ray exposure age of Lafayette. One must consult the recent paper by Korochantseva et al. (2011) in order to fully understand the complexities of cosmic-ray exposure ages for the Nakhlites and Chassigny, but the end result is they were all blasted off of Mars at the same time.

Using ¹⁴C, Jull *et al.* (1993, 1997) originally determined a terrestrial age of ~8.9 \pm 1.3 thousand years. Jull *et al.* (1999) revised the terrestrial age to 2,900 \pm 1,000 years based on the ¹⁴C/¹⁰Be ratio and comparison with data from Nakhla (*with a known terrestrial age*).

On the basis of similar Xe isotopic compositions, Rowe *et al.* (1966) originally suggested that Lafayette and Nakhla are 'one and the same meteorite'. They noted that both Nakhla and Lafayette lacked detectable decay products of ²⁴⁴Pu, but they observed excesses of ¹²⁹Xe which they inferred came from extinct ¹²⁹I (*see Hohenberg thesis, Podosek discussion*). The excess ¹²⁹Xe is now generally interpreted as addition from Martian atmosphere.

Figure 8. Rb-Sr internal mineral isochron for Lafayette Meteorite (from Shih et al. 1998).

Other Isotopes

Taylor et al. (1965) originally reported the oxygen isotopic composition of pyroxenes from Lafayette and noted the difference from other achondrites. Clayton and Mayeda (1983, 1996) reported the oxygen isotopes for Lafayette and revised the data of Clayton et al. (1976). Karlsson et al. (1992) found that the oxygen isotopes in water released from Lafayette was enriched in ¹⁷O, indicating that the past hydrosphere on Mars was from a different reservoir than the lithosphere. Clayton (1993a) reported the ¹⁸O/¹⁶O composition of olivine and pyroxene from Lafayette and calculated the equilibrium temperature. Romanek et al. (1996a, b, 1998) reported additional oxygen isotope data for various minerals, including "iddingsite". Farguhar and Thiemens (2000) found that the Δ^{17} O anomaly was in acid-soluble carbonate within the "iddingsite".

Figure 9. Sm-Nd internal mineral isochron for Lafayette meteorite (from Shih et al. 1998).

Kerridge (1988), Watson *et al.* (1994) and Leshin *et al.* (1996) found that deuterium was greatly enriched in Lafayette (figure 10). Molini-Velsko *et al.* (1986) reported the isotopic composition of Si and found that it was normal. Farquhar *et al.* (2000) and Greenwood *et al.* (2000) have determined the isotopic composition of S. The carbon and nitrogen content and isotopic composition has been reported by Wright *et al.* (1992). Kerridge (1988) also determined the isotopic composition of carbon.

Lee and Halliday (1997) reported excess ¹⁸²W and Harper *et al.* (1995) reported excess ¹⁴²Nd.

Extra-terrestrial Weathering (see section on "Iddingsite")

Treiman *et al.* (1993) showed that the hydrous alteration in the cracks of Lafayette preceded the formation of the fusion crust, thus the alteration is pre-terrestrial (*see also the discussion in Nakhla*). Lindstrom *et al.*

Figure 10. Isotopic composition of hydrogen in Lafayette meteorite from Leshin et al. (1996). Note that the water is still coming off at the high temperature steps (>800C).

Martian Meteorite Compendium C Meyer 2012

References for Lafayette

Figure 11. "Ages" reported for "iddingsite" from Lafayette. This figure was kindly provided by C.-Y. Shih.

(1996) and Treiman and Lindstrom (1997) found that the weathering products in Lafayette were enriched in Hg, Br and alkali elements, however, the sample used in this study may have been contaminated while it was in the chemistry laboratory at Purdue. Vicenzi and coauthors have also been carefully studying the alteration products in Lafayette. Greenwood et al. (1998) have studied the isotopic composition of sulfides in Lafayette and speculate that they may have been modified by alteration on Mars. Ar-Ar age-dating and Xe, Kr isotopic analysis of carefully hand-picked iddingsite separates are consistent with formation on Mars (Swindle et al. 2000). Bridges and Grady (2000) conclude that the "salts" located in the Lafayette alteration (iddingsite) formed by fractional evaporation of an acid brine on Mars (although it is perhaps surprising, that they were not leached-out or modified during the ~3000 years on the ground in Illinois!).

Processing

The very fresh appearance of the fusion crust of caused Nininger (1935) to observe that Lafayette "... had not lain on the Earth for very long time before it was picked up and protected against abuses of a mechanical nature". However, the terrestrial exposure age obtained by Jull *et al.* is on the order of ~3,000 years. Originally the whole specimen was curated at Purdue University. The main mass is now curated at the Smithsonian Institution in Washington, after the Field Museum (Chicago) obtained excellent photos of the fine ablation features on the conical surface (figures 1-3). The Field Museum retained a large piece.