Introduction

Bunch et al. (2008) announced another large basaltic rock from Mars – NWA2800 – that appears to be similar to the Los Angeles specimens. It has a coarse ophitic texture with preferred orientation of intragrown elongate grains of plagioclase and pyroxene (figure 2). It is apparently “complete and lightly weathered with significant desert ablation”.

Mineralogical Mode for NWA2800

Bunch et al. 2008

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>47 vol. %</td>
</tr>
<tr>
<td>Pyroxene</td>
<td>39</td>
</tr>
<tr>
<td>Symplectite</td>
<td>10</td>
</tr>
<tr>
<td>Residuum</td>
<td>2</td>
</tr>
<tr>
<td>Oxides</td>
<td>2</td>
</tr>
</tbody>
</table>

Petrography

NWA2800 is very coarse-grained with ophitic to subophitic texture with oriented elongated crystals and patches of what was apparently pyroxferroite (now
converted to a symplectic intergrowth). Plagioclase (now shocked to maskelynite) and pyroxene crystals are up to 6-7 mm long. Pyroxene is chemically highly zoned (figure 3).

Interstitial patches of late-stage residuum are adjacent to patches of symplectite (presumed breakdown of pyroxferroite). The late-stage minerals include silica-plagioclase graphic intergrowths, fayalite and K-spar while the complex sympletite intrgrowths include fayalite, pyroxene, silica with minor phosphates, opaques, sulfides and silica glass (Bunch et al. 2008).

Isotopes

Rumble and Irving (2009) have reported oxygen isotopes (Delta 17O is 0.25‰).
Figure 4: False-color image of back-scattered-electrons from thin section of NWA2800 (Bunch et al. 2008). Bright-colored zoned minerals are pyroxene. White is ulvospinel. Speckled regions are decomposed pyroxferroite.

References for NWA2800

Figure 5: Symplectite intergrowth in NWA2800 (Bunch et al. 2008).