NWA 817 – 104 grams Nakhlite

Figure 1: Photograph of NWA 817 kindly provided by Bruno Fectay and Carine Bidaut.

Introduction

NWA817 was found in Morocco in November 2000 (Sautter *et al.* 2000; Grossman and Zipfel 2001) by Bruno Fectay and Carine Bidaut. NWA817 is similar to, but different from, the other nakhlites (Mikouchi and Miyamoto 2001). It has a very fresh fusion crust (figure 1). It is 1.35 b.y old with an exposure to cosmic rays for about 11 m.y.

Petrography

NWA817 is an olivine-bearing clinopyroxenite with a cumulate texture (Sautter *et al.* 2002). The intercumulus mesostasis is made of feldspars including trace amounts of sulfide droplets, Ti-magnetite and acicular pyroxene. NWA817 has a higher percentage of mesostasis than the other nakhlites. Pervasive alteration produced reddish clay minerals, including a

hydrous ferrous silicate \sim = "smectite". However, terrestrial weathering is thought to be minor as indicated by the absence of weathering of the sulfides (Gillet *et al.* 2001, 2002).

The pyroxenes and olivines in NWA817 zone to become more iron rich than in the other nakhlites (Sautter *et al.* 2002).

A photomicrograph of a thin section of NWA817 is to be found in Sautter *et al.* Photos of this meteorite can also be seen at http://www.jpl.nasa.gov/snc/nwa817.html

Mineral Chemistry

Olivine: Olivine is Fo_{44} in the core zoned to Fo_{14} in the rim. It contains magmatic inclusions. There is a trace

Mineralogical Mode

C	Sautter <i>et al.</i> (2002)	Gillet et al. (2002)
Pyroxene	69 vol. %	69
Olivine	10	15
Mesostasis	20	15
Oxides	1	1
Hydrous phase		trace

Figure 2: Composition diagram for pyroxene and olivine in NWA 817 (data replotted from Sautter et al. 2002).

fayalite in the mesostasis. According to Sautter *et al.* (2002), olivine has relatively high Ca content (Ca = 0.6%) consistent with crystallization at low pressure from a basaltic melt.

Pyroxene: Sub-calcic augite is rather homogeneous En₃₈₋₂₇Fs₂₄₋₃₄Wo₃₈₋₄₀, but zones to become hedenbergite (figure 2). Wadhwa *et al.* (2001) find that the REE contents of augite are higher than for other nakhlites, but have generally the same pattern. Treiman et al. (2006) found a lack of consistent zoning of Li, Be or B in pyroxenes from NWA817.

Opaque Oxides: Dramatic, skeletal, Ti-magnetite crystals are a unique feature of mesostasis of this nakhlite (figure 3). The Ti-magnetite contains minute ilmenite lamalae. Unlike Nakhla, NWA817 does not contain discrete ilmenite grains.

"Smectite": Gillet et al. (2001, 2002) have found that the composition of reddish alteration phase is different from that of the other nakhlites. SEM, TEM, optical observations, Raman and x-ray spectra suggest that this alteration phase is made up of well-crystallized material and is not a mixture of various crystalline and/or amorphous phases. Analysis of this phase shows it is very Fe-rich, Al-poor (table 2). Raman and x-ray spectra indicate that it is a smectite-related mineral. Sautter et al. (2002) also report several analyses of "alteration phases" in NWA817.

Figure 3. Fantastic Ti-magnetite crystals in NWA 817 (credit Jean-Alix Barrat). Previously published as figure 2d in Sautter et al.

Sulfides: Sulfides in NWA817 were compared with sulfides in other nakhlites by Chevier et al. (2011). Trace pyrrhotite is only partly oxidized (Gillet *et al.* 2002).

Feldspar: The feldspar in NWA817 is $Ab_{74}An_{13}Or_{14}$ to $Ab_{69}An_{17}Or_{15}$, with significant iron content (Fe₂O₃ up to 10%).

Cristobalite: Sautter *et al.* (2002) report trace cristobalite in the mesostasis of NWA 817.

Whole-rock Composition

The chemical composition (figure 4) is similar to that of the other nakhlites (FeO = 19.84%). The ratios FeO/MnO = 37 and Ga/Al = 3.9×10^{-4} are evidence of Martian origin (Sautter *et al.* 2000, 2002).

Radiogenic Isotopes

Marty *et al.* (2001) compute a K-Ar age of \sim 1.35 b.y. for NWA817.

Cosmogenic Isotopes and Exposure Ages

Marty *et al.* (2001) report an average exposure age of 9.7 ± 1.1 m.y. for NWA817 – also similar to that of the other nakhlites.

Other Isotopes

Oxygen isotopes with $\Delta^{17}O = +0.39$ prove the Martian origin (Sautter *et al.* 2002) of this meteorite. Rumble and Irving (2009) reported $\Delta^{17}O = +0.257$.

Table 1: Composition of NWA 817.

reference weight	Sautter 2002 107 mg	
SiO2 TiO2 Al2O3 FeO MnO CaO MgO Na2O K2O P2O5 sum	0.61 3.23 19.84 0.53 13.07 10.31 0.94 0.32	(a) (a) (a) (a) (a) (a) (a) (a) (a)
Li ppm Be Sc V Cr Co Ni Cu Zn Ga Ge	7.43 0.44 47 181 1519 49 71 12.7 71.5 6.77	(a)
As Se Br Rb Sr Y Zr Nb Mo	0.67 0.97 6.06 145 9.86 29.72 4.6 0.17	(b) (a) (a) (a) (a) (a) (b)
Pd ppb Ag ppb Sb ppb Cs ppm Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er	<0.05 0.025 0.25 167 5.92 14.7 2.11 9.02 1.97 0.576 1.96 0.305 1.81 0.36 0.953	(b) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a
Tm Yb Lu Hf Ta W ppb Re ppb Os ppb	0.817 0.121 0.78 0.245 450	(a) (a) (a) (a) (a)
Ir ppb Au ppb Th ppm U ppm	0.001 0.6 0.136	(b) (a) (a)

technique: (a) ICP-AES/MS, (b) INAA

Figure 4: Normalized rare earth element diagram for NWA 817 (compared with Nakhla and Shergotty). Data from Sautter et al. (2002).

Xenon isotopes in NWA817 are reported and discussed by Marty *et al.* (2001) and Marty and Marti K. (2002). Early magmatic differentiation of Mars (<35 Ma) is required to account for the extensive fractionation of ¹²⁹I from ²⁴⁴Pu.

Hydrogen isotopes of the alteration phase, $\ddot{a}D = -170 \pm 14$ ‰, as determined by ion micropobe (Gillet *et al.* 2002), are lighter than for other Martian meteorites.

Extra-terrestrial Weathering

Reddish alteration, similar in appearance to that in the other nakhlites, is found cross-cutting olivines, pyroxenes and mesostasis. However, pre-terrestrial carbonates and other evaporitic minerals have not been identified so far (Gillet *et al.* 2001, 2002). Terrestrial weathering does not appear to be as severe as for other meteorites from the Sahara desert.

References for NWA817

Table 2: Iddingsite composition.

reference	Gillet 2002		
SiO2 TiO2 Al2O3 FeO MnO CaO MgO Na2O K2O P2O5	46.51 0.03 2.26 28.42 0.28 0.14 7.56 0.06 0.42	(a) (a) (a) (a) (a) (a) (a) (a)	0.25 5.69
sum	85.68		86.65
Y ppm La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu	1.81 1.46 2.6 0.32 0.95 0.15 0.2 0.08 0.019 0.17 0.051 0.21 0.036 0.32 0.067	(b)	

technique: (a) electron probe, (b) ion probe