NWA 817 – 104 grams Nakhlite Figure 1: Photograph of NWA 817 kindly provided by Bruno Fectay and Carine Bidaut. #### **Introduction** NWA817 was found in Morocco in November 2000 (Sautter *et al.* 2000; Grossman and Zipfel 2001) by Bruno Fectay and Carine Bidaut. NWA817 is similar to, but different from, the other nakhlites (Mikouchi and Miyamoto 2001). It has a very fresh fusion crust (figure 1). It is 1.35 b.y old with an exposure to cosmic rays for about 11 m.y. ## **Petrography** NWA817 is an olivine-bearing clinopyroxenite with a cumulate texture (Sautter *et al.* 2002). The intercumulus mesostasis is made of feldspars including trace amounts of sulfide droplets, Ti-magnetite and acicular pyroxene. NWA817 has a higher percentage of mesostasis than the other nakhlites. Pervasive alteration produced reddish clay minerals, including a hydrous ferrous silicate \sim = "smectite". However, terrestrial weathering is thought to be minor as indicated by the absence of weathering of the sulfides (Gillet *et al.* 2001, 2002). The pyroxenes and olivines in NWA817 zone to become more iron rich than in the other nakhlites (Sautter *et al.* 2002). A photomicrograph of a thin section of NWA817 is to be found in Sautter *et al.* Photos of this meteorite can also be seen at http://www.jpl.nasa.gov/snc/nwa817.html #### **Mineral Chemistry** *Olivine*: Olivine is Fo_{44} in the core zoned to Fo_{14} in the rim. It contains magmatic inclusions. There is a trace #### **Mineralogical Mode** | C | Sautter <i>et al.</i> (2002) | Gillet et al. (2002) | |---------------|-------------------------------------|----------------------| | Pyroxene | 69 vol. % | 69 | | Olivine | 10 | 15 | | Mesostasis | 20 | 15 | | Oxides | 1 | 1 | | Hydrous phase | | trace | Figure 2: Composition diagram for pyroxene and olivine in NWA 817 (data replotted from Sautter et al. 2002). fayalite in the mesostasis. According to Sautter *et al.* (2002), olivine has relatively high Ca content (Ca = 0.6%) consistent with crystallization at low pressure from a basaltic melt. **Pyroxene**: Sub-calcic augite is rather homogeneous En₃₈₋₂₇Fs₂₄₋₃₄Wo₃₈₋₄₀, but zones to become hedenbergite (figure 2). Wadhwa *et al.* (2001) find that the REE contents of augite are higher than for other nakhlites, but have generally the same pattern. Treiman et al. (2006) found a lack of consistent zoning of Li, Be or B in pyroxenes from NWA817. *Opaque Oxides:* Dramatic, skeletal, Ti-magnetite crystals are a unique feature of mesostasis of this nakhlite (figure 3). The Ti-magnetite contains minute ilmenite lamalae. Unlike Nakhla, NWA817 does not contain discrete ilmenite grains. "Smectite": Gillet et al. (2001, 2002) have found that the composition of reddish alteration phase is different from that of the other nakhlites. SEM, TEM, optical observations, Raman and x-ray spectra suggest that this alteration phase is made up of well-crystallized material and is not a mixture of various crystalline and/or amorphous phases. Analysis of this phase shows it is very Fe-rich, Al-poor (table 2). Raman and x-ray spectra indicate that it is a smectite-related mineral. Sautter et al. (2002) also report several analyses of "alteration phases" in NWA817. **Figure 3.** Fantastic Ti-magnetite crystals in NWA 817 (credit Jean-Alix Barrat). Previously published as figure 2d in Sautter et al. *Sulfides:* Sulfides in NWA817 were compared with sulfides in other nakhlites by Chevier et al. (2011). Trace pyrrhotite is only partly oxidized (Gillet *et al.* 2002). **Feldspar**: The feldspar in NWA817 is $Ab_{74}An_{13}Or_{14}$ to $Ab_{69}An_{17}Or_{15}$, with significant iron content (Fe₂O₃ up to 10%). *Cristobalite*: Sautter *et al.* (2002) report trace cristobalite in the mesostasis of NWA 817. #### Whole-rock Composition The chemical composition (figure 4) is similar to that of the other nakhlites (FeO = 19.84%). The ratios FeO/MnO = 37 and Ga/Al = 3.9×10^{-4} are evidence of Martian origin (Sautter *et al.* 2000, 2002). ### **Radiogenic Isotopes** Marty *et al.* (2001) compute a K-Ar age of \sim 1.35 b.y. for NWA817. ### **Cosmogenic Isotopes and Exposure Ages** Marty *et al.* (2001) report an average exposure age of 9.7 ± 1.1 m.y. for NWA817 – also similar to that of the other nakhlites. #### Other Isotopes Oxygen isotopes with $\Delta^{17}O = +0.39$ prove the Martian origin (Sautter *et al.* 2002) of this meteorite. Rumble and Irving (2009) reported $\Delta^{17}O = +0.257$. Table 1: Composition of NWA 817. | reference
weight | Sautter 2002
107 mg | | |---|--|--| | SiO2
TiO2
Al2O3
FeO
MnO
CaO
MgO
Na2O
K2O
P2O5
sum | 0.61
3.23
19.84
0.53
13.07
10.31
0.94
0.32 | (a) (a) (a) (a) (a) (a) (a) (a) (a) | | Li ppm
Be
Sc
V
Cr
Co
Ni
Cu
Zn
Ga
Ge | 7.43
0.44
47
181
1519
49
71
12.7
71.5
6.77 | (a) | | As
Se
Br
Rb
Sr
Y
Zr
Nb
Mo | 0.67
0.97
6.06
145
9.86
29.72
4.6
0.17 | (b) (a) (a) (a) (a) (a) (b) | | Pd ppb Ag ppb Sb ppb Cs ppm Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er | <0.05 0.025 0.25 167 5.92 14.7 2.11 9.02 1.97 0.576 1.96 0.305 1.81 0.36 0.953 | (b) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a | | Tm Yb Lu Hf Ta W ppb Re ppb Os ppb | 0.817
0.121
0.78
0.245
450 | (a)
(a)
(a)
(a)
(a) | | Ir ppb
Au ppb
Th ppm
U ppm | 0.001
0.6
0.136 | (b)
(a)
(a) | technique: (a) ICP-AES/MS, (b) INAA Figure 4: Normalized rare earth element diagram for NWA 817 (compared with Nakhla and Shergotty). Data from Sautter et al. (2002). Xenon isotopes in NWA817 are reported and discussed by Marty *et al.* (2001) and Marty and Marti K. (2002). Early magmatic differentiation of Mars (<35 Ma) is required to account for the extensive fractionation of ¹²⁹I from ²⁴⁴Pu. Hydrogen isotopes of the alteration phase, $\ddot{a}D = -170 \pm 14$ ‰, as determined by ion micropobe (Gillet *et al.* 2002), are lighter than for other Martian meteorites. #### **Extra-terrestrial Weathering** Reddish alteration, similar in appearance to that in the other nakhlites, is found cross-cutting olivines, pyroxenes and mesostasis. However, pre-terrestrial carbonates and other evaporitic minerals have not been identified so far (Gillet *et al.* 2001, 2002). Terrestrial weathering does not appear to be as severe as for other meteorites from the Sahara desert. **References for NWA817** Table 2: Iddingsite composition. | reference | Gillet 2002 | | | |--|--|--|--------------| | SiO2
TiO2
Al2O3
FeO
MnO
CaO
MgO
Na2O
K2O
P2O5 | 46.51
0.03
2.26
28.42
0.28
0.14
7.56
0.06
0.42 | (a)
(a)
(a)
(a)
(a)
(a)
(a)
(a) | 0.25
5.69 | | sum | 85.68 | | 86.65 | | Y ppm La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu | 1.81
1.46
2.6
0.32
0.95
0.15
0.2
0.08
0.019
0.17
0.051
0.21
0.036
0.32
0.067 | (b) | | technique: (a) electron probe, (b) ion probe