COSMIC DUST COURIER NO. 6

Contents

New Fragments of Chondritic Clusters Sampled for
Cosmic Dust Catalog 6 ... 2

Report of the First Meeting of the Cosmic Dust Committee 2

Cosmic Dust Sample Allocation Plan 3

Large-Area Collectors: Current Status and Plans for the Future 5

Itemized Listing of Available Samples 6

Guidelines for Preparing a Sample Request 16
NEW FRAGMENTS OF CHONDRITIC CLUSTERS SAMPLED FOR COSMIC DUST CATALOG 6

In the previous five Cosmic Dust Catalogs particles were presented from five individual collection surfaces. Cosmic Dust Catalog 6 will depart from the usual format in that it principally reports a re-sampling of particles which are most likely to be cosmic in origin. Thus, this catalog principally contains descriptions of additional fragments of large chondritic particles from which other fragments have previously been removed, characterized, and allocated. It is hoped that this re-sampling will facilitate increased interdisciplinary work on interesting chondritic particles. Cosmic Dust Catalog 6 contains descriptions of 32 additional fragments of chondritic particles from collection surfaces W7010, W7026 (previously sampled for Cosmic Dust Courier 1 - CDCr 1), W7028 (CDCr 1), W7029 (previously sampled for Cosmic Dust Catalog 2 - CDCr 2), W7031 (CDCr 1), W7066 (CDCr 5), W7069 (CDCr 5), W7071 (CDCr 5), U2011 (CDCr 5), and U2015 (CDCr 5 & CDCr 5). In addition, 7 chondritic particles are described from three new collection surfaces, these being U2017, U2018, and U2022. Finally, descriptions of 32 other interesting particles encountered during the particle sampling of these flags are included to round out the contents of the catalog.

Cosmic Dust Catalog 7 will describe new particles from collection surface U2022, which sampled the stratosphere over the west-central U.S. from April to May, 1984.

REPORT OF THE FIRST MEETING OF THE COSMIC DUST COMMITTEE

Representatives of principal cosmic dust research groups met during the Lunar and Planetary Science Conference, on March 13, 1985, to discuss the possibility of establishing a cosmic dust users group. This action was prompted by a request from the Lunar and Planetary Sample Team (LAPST). At this meeting were the following persons: D.S. McKay (NASA/JSC), F. Horz (NASA/JSC), D.E. Brownlee (Univ. of Washington), I.D.R. Mackinnon (Univ. of New Mexico), and R.M. Walker (Washington Univ.). M.E. Zolensky and D.P. Blanchard attended as representatives of the NASA Cosmic Dust Program.

The decision of those present at this meeting was to form a group, to be called the Cosmic Dust Committee (CDC) [not to be confused with Cosmic Dust Catalog (CDC) or Cosmic Dust Courier (CDC)] which will oversee the cosmic dust curation and allocation process. In addition, the committee hopes to provide a greater amount of advocacy for cosmic dust research. The CDC will report to LAPST, and will also be available to brief LPGRP and other advisory groups as needed. The full committee will meet during the annual Lunar and Planetary Science Conferences, and at one other time during the year as needed.

A streamlined cosmic dust allocation process was recommended by the committee, which is summarized elsewhere in this Courier. This procedure represents an attempt to speed up the sample allocation process for simple cosmic dust requests, reserving only the more complex or unique sample requests for full discussion by the assembled committee.

Discussion indicated that the next Cosmic Dust Catalog should predominantly describe more chondritic porous aggregates, which are the most frequently requested particles. Consequently, Cosmic Dust Catalog, Vol. 6, mainly
contains newly-picked fragments of chondritic porous aggregates noted on earlier flags. It was also decided that in future volumes of the Cosmic Dust Catalog particles would be grouped by type, rather than by mount number as has been the case in the past.

F. Horz described the new FOILS lab at JSC. This laboratory is a class 10,000 clean room where the LDEF surfaces, initially, will be examined. At the heart of this lab is a Mann Comparator, which permits optical scanning of large surfaces. This instrument is currently being used to examine returned satellite parts for micrometeorite impact features.

All present at the meeting agreed that membership in the CDC should not be limited to the founding members. It was felt that other research groups, particularly foreign ones, should be encouraged to participate. Individuals wishing to do so should contact any of the committee members listed above.

COSMIC DUST SAMPLE ALLOCATION PLAN

1. Curator receives the sample request and acts as the single point of contact for all communications with the requester.

2. Curator reviews the sample request as written.

3. Based on his knowledge of the sample inventory and JSC laboratory capability, the Curator decides whether the requested allocation is feasible. If it is feasible, step (5) is next. If it is not feasible, step (4) is next.

4. Curator contacts the requester directly (by telephone or letter) to obtain the clarifications necessary to make the sample request feasible. Upon receipt of acceptable clarifications, the Curator proceeds again through steps (2) and (3) to step (5).

5. Curator decides whether the final form of the sample request (and its allocation plan) would require a "simple" or a "complex" allocation. A "complex" allocation is one which would involve more than 25% of the total number of particles of any specific type or size that the Curator estimates would be collected during the year of collection in progress at that time. A "simple" allocation is one which would not violate the "25%" rule. "Complex" allocations would be handled in step (8) whereas "simple" allocations would be handled in step (6).

6. Curator mails copies of the original request (plus modifications or clarifications) and the allocation plan to each Cosmic Dust Committee (CDC) member for review.

7. CDC members reply in writing to the curator and suggest one of the three following courses of action for each part of the request:

 (a) Proceed with the allocation plan (Go to step (9)).

 (b) Recycle (go back to step (3)) for further clarification before review.
(c) Refer to next formal CDC meeting (go to step (8)).

A single recommendation for the allocation request to be referred to the next formal CDC meeting will automatically result in this action being taken. A single recommendation to recycle the allocation request for further clarification before review will result in this action being taken.

8. The fully assembled CDC arrives at one of the three following decisions for each part of any "complex" allocation request, and each part of any "simple" allocation request which has been referred to a formal CDC meeting in step (7):

(a) Proceed with allocation according to the plan proposed by the Curator or developed by the CDC (go to step (9)).

(b) Recycle request (go to step (3)) for further clarification and additional review.

(c) Deny request (go to step (9)).

9. A member of the CDC, acting as corresponding member to LAPST, reports to the fully assembled LAPST on the allocation recommendations of the CDC. LAPST arrives at one of the three following decisions for each part of the CDC allocation plan:

(a) Proceed with the allocation according to the plan proposed by the CDC (go to step (12)).

(b) Recycle request (go to step (3)) for further clarification and additional review.

(c) Deny request (go to step (10)).

10. Curator transmits to NASA Headquarters a written summary as in (12) but with the LAPST recommendation against allocation. Given NASA Headquarters concurrence, step (11) is next.

11. Curator informs requester that his request is denied. Steps (12) and (13) are not necessary.

12. Curator transmits to NASA Headquarters a written summary of the sample request, the allocation plan, and the LAPST recommendation for allocation. Given NASA Headquarters concurrence, step (13) is next.

13. Curator proceeds with approved allocation plan and sends samples to requester.
LARGE-AREA COLLECTORS: CURRENT STATUS AND PLANS FOR THE FUTURE

Current design and construction status of the Large-Area Collector (LAC) was reviewed at a meeting convened by M. Zolensky and J. Townsend (NASA/JSC) at the Johnson Space Center on September 13, 1985. Attendees included G. Shelton (NASA/Ames) and W. Ferguson (Lockheed/Burbank, CA), representing the U2/ER-2 aircraft group at NASA/Ames Research Center, J. Bohannon, T. Davis (NASA/JSC), G. Cathey and R. Darney (Lockheed/JSC) of the JSC team who designed the LAC, and D. Blanchard (NASA/JSC) and J. Warren (Northrop/JSC) as additional representatives of the NASA/JSC Cosmic Dust Program.

The group agreed that the LAC had reached an acceptable design, and final construction plans were discussed. All parties were positive about building and flying the LAC's.

The support pylons for the LAC will be constructed by Lockheed/Ames, with the actual collector mechanism being fabricated in Houston. Final assembly of the LAC will occur at JSC. The LAC will be constructed in the following year, with the target date for completion being May, 1986. If this date can be met, then integration onto the aircraft and testing could be performed one month later at Wallops Island.

The collection surface area of the LAC's will be over an order of magnitude larger than that of the current flags. Therefore, use of the LAC's should increase the collection rate of large (>50 micrometer) particles and, thereby, facilitate the use of many types of particle analyses not currently possible. Larger particles should also encourage more interdisciplinary and interlaboratory research. If construction of the LAC proceeds as scheduled, samples will be available from it by the end of 1986.
Prompt allocation of samples in response to approved sample requests serves the interests of the cosmic dust science community but also creates a minor problem in parallel efforts to publicize the current status of available samples. Unlike lunar and meteorite samples, cosmic dust samples, with the exception of relatively rare particles greater than 20-30-micrometer size, cannot be split or subdivided for allocation to more than one sample requestor. Therefore, once an individual dust particle has been approved for allocation to a given investigator, it immediately becomes unavailable for allocation to other investigators.

As an aid to researchers planning future sample requests, the current availability of samples in inventory (both cataloged and uncataloged) is summarized in Table 1. The information in Table 1 is explained in the accompanying "Key to Table 1" and in the following discussion. The key to Table 1 is mostly self-explanatory. For complete clarity, though, the following additional explanations are offered for each column of the table:

Line Number	The first and last columns of the table are simply reference numbers that identify the respective lines in the table. Those numbers are included as an aid in reading individual lines in the table.
Sample Number	The generic designation of each dust particle begins with the number of the collection surface on which it was collected. Because only collection "flags" (small-area collectors) are currently being flown, the "Sample Number" entry refers to the flag number. Flags flown on the WB57F aircraft are numbered "W7ii," and those flown on U-2 or ER-2 aircraft are numbered "U2iii," where ".iti" is a three-digit (integer) number.
Flag Status	This column indicates the type of work that has been performed on the flag in question. The "p" notation indicates that particles have been picked from the flag in the NASA/JSC Cosmic Dust Laboratory whereas the "r" notation indicates that the flag has been "reserved" (set aside to assure that representative sample material will be available for future scientific studies). An entry of "I..." indicates that the entire flag has been allocated to a cosmic dust investigator (see "Key to Table 1" for identification). A blank entry in the "Flag Status" column indicates that no sample processing has yet occurred for that flag. Flag status "Discarded" indicates that both the flag and its particle load have been discarded, due to excessive amounts of ground contamination being found on the collection surface.
Mount Status	For flags from which particles have been picked, the "Mount Status" column identifies the sample mounts that have been created during the picking operation. The current procedure for picking and preliminary examination
of particles utilizes a scanning electron microscopy (SEM) mount with 16 uniquely defined particle storage locations. The mounts that receive particles from a given flag are designated "A, B, C, ..., etc." in the order that they are filled with particles. A blank entry in the "Mount Status" column indicates that no particle mounts have yet been created for the flag in question.

Particle Status

This group of 16 columns summarizes the status of each of the 16 particles that comprise the normal sample load of the SEM mount identified under the "Mount Status" column on the same line. An entry of "I..." indicates that the particle has been allocated to a sample investigator (see "Key to Table 1" for identification). An entry of "n" indicates that the particle was lost during handling whereas an entry of "u" indicates that no particle has yet been assigned the sample number in question. If the "Mount Status" column indicates that a particle mount has been created, a blank entry under one of the "Particle Status" columns on the same line indicates that the particle in question exists and is available for allocation. If more than 15 particles were documented on the mount, status of each of the extra particles is given in the "Comments" column (see below) using the same notation just described.

Comments

This column provides additional information that is needed to supplement or clarify entries made elsewhere in the table. Types of information listed under "Comments" include identification of flags that contain abundant terrestrial contamination (e.g., volcanic material), allocation status of particles existing on individual sample mounts but numbered outside the normal 1-16 series, and cross-references to samples that have been renumbered.

If the "Comments" column indicates that a flag is significantly contaminated (entry of "Ground contam.", "Volcanic ash", etc.), other areas on that line in the table will commonly contain descriptive information that does not follow the normal column-by-column definitions given above. In that case, the information given reflects the fact that, because of fundamental differences between "contamination" and "cosmic" material, processing and sample allocations of the "contamination" followed a different course than is normally followed for "cosmic" samples. "Volcanic" contaminants, as listed in Table 1, are attributable almost exclusively to the March/April 1982 eruption of El Chichon volcano (see Courier 2) whereas "ground" contaminants accrue from instances in which flight crew errors lead to exposure of flags at undesirably low (tropospheric) altitudes. Although "cosmic" particles may occur on some of the contaminated flags, their selection from among abundant contaminant particles would be extremely time-consuming.

Allocation status information found in the "Comments" column follows the same format described above for the "Particle Status" column, except that the allocation status code is separated from the particle number by a "/" symbol. For example, the entry of "Also 17/17; 18-19" under "Comments" on line 203 in the table indicates that, in addition to the normal complement
of 16 particles on sample mount U2001D, particles 17-19 were also deposited but that particle U2001D17 has been allocated to investigator 17.

Cross-references to other sample numbers occur under "Comments" in those cases where sample renumbering has occurred. Normally, sample renumbering is avoided but does occur in each case where preliminary examination of a small fragment of a large (usually, > 20-micrometer size) particle indicates that the large particle is probably of extraterrestrial ("cosmic") origin. Then, the number assigned to the preliminary examination fragment will be replaced by a new number indicating that the fragment was the first split of a large cosmic particle. For example, preliminary examination of a large particle on flag W7029 indicated that the particle was cosmic, leading to the naming of the particle as W7029*A. Therefore, as shown on line 53 of the table, the preliminary examination fragment that was originally named W7029C1 was renamed as W7029*A1. By referring to the status information for W7029*A, given on line 62 of the table, it is clear that W7029*A1 was allocated to investigator 11 and that additional fragments of the particle were allocated to several other investigators.
<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>FLAG</th>
<th>MOUNT STATUS</th>
<th>PARTICLE STATUS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>W7001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7010*A1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7011</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7012</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7016</td>
<td>p; I11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7018</td>
<td>I3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7020</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7021</td>
<td>I3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7022</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7023</td>
<td>r</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7026</td>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7026</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1

NASA/JSC COSMIC DUST PROGRAM: SAMPLE AVAILABILITY SUMMARY

Effective Date: November, 1985
SAMPLE NUMBER	FLAG	MOUNT	SAMPLE STATUS	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	COMMENTS	
W7026*A													14						Also 17; 18/n		
W7027 (12); p	A			14	14	14	14	14	14	14	14	14	14	14	14	n	n	112	112	Also 17-18	
	B																	112	112	Also 17/12	
	C				12														19	114	Also 17
	D																	112	14	Also 17-27	
	E																			113	Also 17-19
	F																				Also 17-19
	G																				Also 17-19
W7028	p			14																Also 17-19	
	B																				Also 17-19
	D																				Also 17-19
W7028*C	p			16																Also 17-19	
	B																				Also 17-19
	D																				Also 17-19
W7029	p			14																Also 17-19	
	B																				Also 17-19
	D																				Also 17-19
W7029*A	p			14																Also 17-19	
	B																				Also 17-19
	D																				Also 17-19
W7029*B	r			14																Also 17-19	
	r																				Also 17-19
W7030	p			14																Also 17-19	
W7031 (12); A	p			14																Also 17-19	
W7031*B	p			14																Also 17-19	
W7031*C	p			14																Also 17-19	
W7031*D	p			14																Also 17-19	
W7032	p			14																Also 17-19	
W7033	p			14																Also 17-19	
W7034	p			14																Also 17-19	
W7035	p			14																Also 17-19	
W7036	p			14																Also 17-19	

- Contingency sample "scoops"

--- Continued ---
<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>FLAG</th>
<th>MOUNT</th>
<th>STATUS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>W7037</td>
<td></td>
<td>C-K</td>
<td></td>
<td>Contingency sample scoops</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-K scoops onto electron microscopy substrates / 15</td>
</tr>
<tr>
<td>W7038</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed onto Nuclepore filter membrane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7039</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed into Freon-113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7040</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed into Freon-113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7041</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed into Freon-113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7042</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed into Freon-113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7043</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed into Freon-113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7044</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed into Freon-113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7045</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed into Freon-113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7046</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed into Freon-113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7047</td>
<td></td>
<td></td>
<td></td>
<td>Rinsed into Freon-113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7048</td>
<td></td>
<td></td>
<td></td>
<td>Deployment failed</td>
</tr>
<tr>
<td>W7049</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7050</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7051</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7052</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7053</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7054</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7055</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7056</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic ash</td>
</tr>
<tr>
<td>W7057</td>
<td></td>
<td></td>
<td></td>
<td>Broken flag</td>
</tr>
<tr>
<td>W7058</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic aerosol</td>
</tr>
<tr>
<td>W7058*</td>
<td></td>
<td>p A B</td>
<td></td>
<td>Droplets mounted on electron microscopy substrates / 15</td>
</tr>
<tr>
<td>W7059</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic aerosol</td>
</tr>
<tr>
<td>W7060</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic aerosol</td>
</tr>
<tr>
<td>W7061</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic aerosol</td>
</tr>
<tr>
<td>W7062</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic aerosol</td>
</tr>
<tr>
<td>W7063</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic aerosol</td>
</tr>
<tr>
<td>W7064</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic aerosol</td>
</tr>
<tr>
<td>W7065</td>
<td></td>
<td></td>
<td></td>
<td>Volcanic aerosol</td>
</tr>
<tr>
<td>W7066</td>
<td></td>
<td></td>
<td></td>
<td>1 = W7066A1; 5 = W7066A2</td>
</tr>
<tr>
<td>W7066*A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7066*B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7067</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7069</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7069*A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7069*B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7070</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE NUMBER</td>
<td>FLAG</td>
<td>MOUNT NUMBER</td>
<td>STATUS</td>
<td>01</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>--------------</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>W7071</td>
<td>p A</td>
<td></td>
<td></td>
<td>u</td>
</tr>
<tr>
<td>W7071*A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7072</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W7073</td>
<td>p A</td>
<td></td>
<td></td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>U2002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2011</td>
<td>p A</td>
<td></td>
<td></td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td></td>
<td>u</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2011*A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2011*B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2013</td>
<td>p A</td>
<td></td>
<td></td>
<td>u</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td>116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2015*A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2015*B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued...
<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>FLAG</th>
<th>MOUNT</th>
<th>STATUS</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U2017</td>
<td>p A</td>
<td></td>
<td></td>
<td>u</td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2019</td>
<td>p A</td>
<td></td>
<td></td>
<td>u</td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2020</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2021</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2022</td>
<td>p A</td>
<td></td>
<td></td>
<td>u</td>
<td>Also 17, 20, 23-25</td>
<td></td>
</tr>
<tr>
<td>U2022</td>
<td>p B</td>
<td>n</td>
<td></td>
<td>u</td>
<td>Also 17, 20, 23-25</td>
<td></td>
</tr>
<tr>
<td>U2022</td>
<td>p C</td>
<td>n</td>
<td></td>
<td>u</td>
<td>Also 17-19</td>
<td></td>
</tr>
<tr>
<td>U2022</td>
<td>p D</td>
<td>n</td>
<td></td>
<td>u</td>
<td>Also 17-31</td>
<td></td>
</tr>
<tr>
<td>U2022</td>
<td>p E</td>
<td>n</td>
<td></td>
<td>u</td>
<td>Also 17-19</td>
<td></td>
</tr>
<tr>
<td>U2022</td>
<td>p F</td>
<td>n</td>
<td></td>
<td>u</td>
<td>Also 17-24</td>
<td></td>
</tr>
<tr>
<td>U2023</td>
<td>r</td>
<td></td>
<td>Volcanic aerosol?</td>
<td></td>
</tr>
<tr>
<td>U2024</td>
<td>I1</td>
<td></td>
<td>Broken helicoil</td>
<td></td>
</tr>
<tr>
<td>U2025</td>
<td>r</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2026</td>
<td>Discarded</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2027</td>
<td>Discarded</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2028</td>
<td>Discarded</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2029</td>
<td>r</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2030</td>
<td>Discarded</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2031</td>
<td>Discarded</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
<tr>
<td>U2032</td>
<td>Discarded</td>
<td></td>
<td>Ground contam.</td>
<td></td>
</tr>
</tbody>
</table>
KEY TO TABLE 1

A, B, C, etc. - SEM particle-mount designation used in preliminary examination or storage.

I . . . - sample allocated to Investigator "I . . ." (see separate listing, below).

I . . . x - sample allocated to Investigator "I . . ." but without prior SEM examination (i.e., no catalog-type data were published).

(I . . .) - sample now at NASA/JSC but previously allocated to Investigator "I . . .".

c - particle tentatively identified as a laboratory contaminant.

n - sample lost during handling or preliminary examination.

p - particles "picked" (i.e., retrieved from collection surface) to yield samples as listed.

r - reserved for posterity.

u - unassigned sample number (i.e., no sample having this number exists in inventory).

Investigators:

I1: D. S. McKay (NASA/Johnson Space Center, Houston, TX, USA)
I2: D. E. Brownlee (Univ. of Washington, Seattle, WA, USA)
I3: R. M. Walker (Washington Univ., St. Louis, MO, USA)
I4: P. R. Buseck (Arizona State Univ., Tempe, AZ, USA)
I5: M. Maurette (Laboratoire Rene Bernas, Orsay, France)
I6: G. L. Nord, Jr. (U. S. Geological Survey, Reston, VA, USA)
I7: R. H. Hewins (Rutgers Univ., New Brunswick, NJ, USA)
I8: J. C. Laul (Battelle Pacific Northwest Labs, Richland, WA, USA)
I9: E. K. Gibson, Jr. (NASA/Johnson Space Center, Houston, TX, USA)
I10: W. H. Zoller (Univ. of Maryland, College Park, MD, USA)
I11: T. Esat (Australian National Univ., Canberra, Australia)
I12: K. Yamaokoshi (Univ. of Tokyo, Japan)
I13: J. Bradley (McCrone & Associates, Chicago, IL, USA)
I14: R.D. Vis (NatuurKundig Laboratorium, Amsterdam, The Netherlands)
I15: M.E. Zolensky (NASA/Johnson Space Center, Houston, TX, USA)
I16: F.J. Rietmeijer (Lockheed/Johnson Space Center, Houston, TX, USA)
GUIDELINES FOR PREPARING A SAMPLE REQUEST

All sample requests should be made in writing to:

Curator/Cosmic Dust
Code SN2/Planetary Materials Branch
NASA/Johnson Space Center
Houston, TX 77058 USA.

Information may be obtained by telephone via (713) 483-6241 or -3274 [FTS 525-6241 or -3274].

Each request should refer to specific samples by their official identification numbers and should contain enough information to permit evaluation of the proposed study and the adequacy of the requestor's facilities. All necessary information should probably be condensable into a one- or two-page letter, although informative attachments (e.g., copies of pages from related proposals, reprints of publications, flow diagrams for analyses) are welcome. In addition, a brief statement regarding the desired method of mounting or containerizing the samples for shipment to the requestor should be included (see article on "Sample Containers for Shipment of Allocated Dust Particles" on pages 14-21 of Cosmic Dust Courier No. 4). Each sample request will be reviewed by the Cosmic Dust Committee (CDC), and the Lunar and Planetary Sample Team (LAPST), committees of scientists that advises NASA on matters related to the curation and allocation of extraterrestrial samples. The NASA/JSC Planetary Materials Branch will arrange for all required CDC and LAPST reviews and will inform requestors of results as rapidly as possible.

Prospective sample requestors may select samples from among those described in any issue of the Cosmic Dust Catalog or Cosmic Dust Courier series. However, reference should be made to Table 1 of this newsletter to check the availability of each sample before it is requested. In addition, we encourage investigators to contact us in advance of submitting their sample requests if further information is desired.