Research Compendium

Skip to content | Skip to navigation

Site Actions

Site Sections

Breadcrumbs

Home Research Compendium

Compendium of Scientific Literature Related to the Cosmic Dust Collections

2022

John P. Bradley, Hope A. Ishii, Karen Bustillo, James Ciston, Ryan Ogliore, Thomas Stephan, Donald E. Brownlee f, David J. Joswiak, 2022. On the provenance of GEMS, a quarter century post discovery, Geochimica et Cosmochimica Acta 335, p. 323-338.

https://www.sciencedirect.com/science/article/pii/S0016703722003246?via%3Dihub

Lindsay P. Keller and George J. Flynn, 2022. Dust from the outer Solar System comes down to Earth. In Nature Astronomy volume 6, pages 645-646.

https://www.nature.com/articles/s41550-022-01662-7

A.N. Nguyen , K. Nakamura-Messenger, L.P. Keller, S. Messenger, 2022. Diverse assemblage of presolar and solar system materials in anhydrous interplanetary dust particles: Coordinated NanoSIMS and TEM analyses, In Geochimica et Cosmochimica Acta 336, p. 131-139.

https://www.sciencedirect.com/science/article/pii/S001670372200480X?via%3Dihub

Alexey Potapov, Maria Elisabetta Palumbo, Zelia Dionnet, Andrea Longobardo, Cornelia Jäger, Giuseppe Baratta, Alessandra Rotundi, and Thomas Henning, Exploring Refractory Organics in Extraterrestrial Particles, The Astrophysical Journal 935, vol. 2.

https://iopscience.iop.org/article/10.3847/1538-4357/ac7f32

2021

Junya MATSUNO, Akira TSUCHIYAMA, Akira MIYAKE, Keiko NAKAMURA-MESSENGER, Scott MESSENGER, 2021. Three-dimensional observation of GEMS grains: Their high-temperature condensation origin, Geochimica et Cosmochimica Acta  320, p. 207-222.

https://www.sciencedirect.com/science/article/pii/S0016703721007377?via%3Dihub

2020

Bones, D.L., Carrillo-Sánchez, J.D., James, A.D., Connell, S.D., Plane, J.M.C. and Mann, G.W., 2020, May. Does organic carbon hold micrometeoroids together?. In Abstracts of EGU General Assembly 2020. Copernicus.

https://eprints.whiterose.ac.uk/158489/1/EGU2020-19548-print.pdf

Chan, Q.H.S., Stroud, R., Martins, Z. and Yabuta, H., 2020. Concerns of organic contamination for sample return space missions. Space Sci. Rev.

https://www.researchgate.net/profile/Queenie_H_S_Chan/publication/341323136_Concerns_of_Organic_Contamination_for_Sample_Return_Space_Missions/links/5ebac0fba6fdcc90d66ec0aa/Concerns-of-Organic-Contamination-for-Sample-Return-Space-Missions.pdf

Flynn, G.J., 2020. Interplanetary Dust Particles. In Oxford Research Encyclopedia of Planetary Science.

https://oxfordre.com/planetaryscience/view/10.1093/acrefore/9780190647926.001.0001/acrefore-9780190647926-e-143

Genge, M.J., Van Ginneken, M. and Suttle, M.D., 2020. Micrometeorites: Insights into the flux, sources and atmospheric entry of extraterrestrial dust at Earth. Planetary and Space Science, p.104900.

https://www.sciencedirect.com/science/article/abs/pii/S0032063319304842

Levasseur-Regourd, A.C., Baruteau, C., Lasue, J., Milli, J. and Renard, J.B., 2020. Linking studies of tiny meteoroids, zodiacal dust, cometary dust and circumstellar disks. Planetary and Space Science, p.104896.

Martins, Z., Chan, Q.H.S., Bonal, L., King, A. and Yabuta, H., 2020. Organic matter in the solar system-implications for future on-site and sample return missions. Space Sci. Rev.

https://www.mdpi.com/2073-4433/11/10/1031

Ogliore, R.C., Palma, R.L., Stodolna, J., Nagashima, K., Pepin, R.O., Schlutter, D.J., Gainsforth, Z., Westphal, A.J. and Huss, G.R., 2020. Q-gases in a late-forming refractory interplanetary dust particle: A link to comet Wild 2. Geochimica et cosmochimica acta271, pp.116-131.

https://www.sciencedirect.com/science/article/abs/pii/S0016703719307410

Plane, J., Marsh, D. and Feng, W., Wave-induced transport of chemically active species in the mesosphere and lower thermosphere.

https://www.nercdtp.leeds.ac.uk/projects/pdf/Plane.pdf

Renard, J.B., Berthet, G., Levasseur-Regourd, A.C., Beresnev, S., Miffre, A., Rairoux, P., Vignelles, D. and Jegou, F., 2020. Origins and Spatial Distribution of Non-Pure Sulfate Particles (NSPs) in the Stratosphere Detected by the Balloon-Borne Light Optical Aerosols Counter (LOAC). Atmosphere11(10), p.1031.

https://www.mdpi.com/2073-4433/11/10/1031

Rudraswami, N.G., Fernandes, D. and Pandey, M., 2020. Probing the nature of extraterrestrial dust reaching the Earth's surface collected from the Maitri station, Antarctica. Meteoritics & Planetary Science.

https://onlinelibrary.wiley.com/doi/abs/10.1111/maps.13574

Ugolnikov, O.S. and Maslov, I.A., 2020. Post-Volcanic Aerosol Altitude and Particle Size Measurements Basing on Twilight Sky Polarimetry. arXiv preprint arXiv:2001.06034.

https://arxiv.org/abs/2001.06034

Zubko, E., 2020. Absolute magnitude of small cosmic dust particles. Monthly Notices of the Royal Astronomical Society492(1), pp.810-820.

https://academic.oup.com/mnras/article-abstract/492/1/810/5645263

2019

Beresnev, A.M., Rairoux, P., Vignelles, D. and Jégou, F., 2019, The complex origin and spatial distribution of non-pure sulfate particles (NSPs) in the stratosphere 2.

https://pdfs.semanticscholar.org/a0ff/67c81848f359764aa96ce1c3cc240bff0ffe.pdf

Bones, D.L., Carrillo-Sánchez, J.D., Kulak, A.N. and Plane, J.M., 2019. Ablation of Ni from micrometeoroids in the upper atmosphere: Experimental and computer simulations and implications for Fe ablation. Planetary and Space Science179, p.104725.

https://www.sciencedirect.com/science/article/pii/S0032063318304410

Dick, S.J., 2019. The Interplanetary Medium Family. In Classifying the Cosmos (pp. 87-101). Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-030-10380-4_5

Flynn, G., 2019, Phosphorous Condensation from the Solar Protoplanetary Disk: Evidence from the Primitive Interplanetary Dust.

https://meetingorganizer.copernicus.org/EPSC-DPS2019/EPSC-DPS2019-98-1.pdf

Gerding, M., Daly, S. and Plane, J.M.C., 2019. Lidar soundings of the mesospheric nickel layer using Ni (3F) and Ni (3D) transitions. Geophysical Research Letters46(1), pp.408-415.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL080701

Gorkavyi, N.N., 2019. Dust ring around Earth caused by the Chelyabinsk bolide. In Chelyabinsk Superbolide (pp. 194-217). Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-030-22986-3_11

Grün, E., Krüger, H. and Srama, R., 2019. The Dawn of Dust Astronomy. Space Science Reviews215(7), p.46.

https://link.springer.com/article/10.1007/s11214-019-0610-1

Güttler, C., Mannel, T., Rotundi, A., Merouane, S., Fulle, M., Bockelée-Morvan, D., Lasue, J., Levasseur-Regourd, A.C., Blum, J., Naletto, G. and Sierks, H., 2019. Synthesis of the morphological description of cometary dust at comet 67P/Churyumov-Gerasimenko. Astronomy & Astrophysics630, p.A24.

https://www.aanda.org/articles/aa/abs/2019/10/aa34751-18/aa34751-18.html

Horányi, M., Kempf, S., Sternovsky, Z., Tucker, S., Pokorný, P., Turner, N.J., Castillo-Rogez, J.C., Bálint, T., West, J.L. and Szalay, J.R., 2019, March. Fragments from the Origins of the Solar System and our Interstellar Locale (FOSSIL): A Cometary, Asteroidal, and Interstellar Dust Mission Concept. In 2019 IEEE Aerospace Conference (pp. 1-12). IEEE.

https://ieeexplore.ieee.org/abstract/document/8742223

Kocherov, A.V., Zamozdra, S.N. and Gracheva, I.V., 2019. The hunt for cosmic dust. In Chelyabinsk Superbolide (pp. 108-113). Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-030-22986-3_5

Koschny, D., Soja, R.H., Engrand, C., Flynn, G.J., Lasue, J., Levasseur-Regourd, A.C., Malaspina, D., Nakamura, T., Poppe, A.R., Sterken, V.J. and Trigo-Rodríguez, J.M., 2019. Interplanetary dust, meteoroids, meteors and meteorites. Space Science Reviews215(4), p.34.

https://link.springer.com/article/10.1007/s11214-019-0597-7

Lampe, S., 2019. IRON AND OXYGEN ISOTOPIC CHARACTERISATION OF GLASS COSMIC SPHERULES FROM THE SØR RONDANE MOUNTAINS, EAST ANTARCTICA.

https://lib.ugent.be/fulltxt/RUG01/002/782/924/RUG01-002782924_2019_0001_AC.pdf

Levasseur-Regourd, A.C., Baruteau, C., Lasue, J. and Renard, J.B., 2019, July. Joining efforts between studies of cometary dust and meteoroids?.

https://hal-ensta-paris.archives-ouvertes.fr/LATMOS/insu-02155764v1

McCubbin, F.M., Herd, C.D., Yada, T., Hutzler, A., Calaway, M.J., Allton, J.H., Corrigan, C.M., Fries, M.D., Harrington, A.D., McCoy, T.J. and Mitchell, J.L., 2019. Advanced curation of astromaterials for planetary science. Space Science Reviews215(8), p.48.

https://link.springer.com/article/10.1007/s11214-019-0615-9

Quirico, E. and Bonal, L., 2019. Organic Matter in Interplanetary Dusts and Meteorites. In Biosignatures for Astrobiology (pp. 23-50). Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-319-96175-0_2

Reddy, K.C., Premkumar, B. and Yellaiah, G., 2019. Latitudinal difference in meteor trail ionization heights and identification of meteor showers. Astrophysics and Space Science364(11), p.203.

https://link.springer.com/article/10.1007/s10509-019-3687-9

Sterken, V.J., Westphal, A.J., Altobelli, N., Malaspina, D. and Postberg, F., 2019. Interstellar Dust in the Solar System. Space Science Reviews215(7), p.43.

https://link.springer.com/article/10.1007/s11214-019-0607-9

Vogt, M., Hopp, J., Gail, H.P., Ott, U. and Trieloff, M., 2019. Acquisition of terrestrial neon during accretion–A mixture of solar wind and planetary components. Geochimica et Cosmochimica Acta264, pp.141-164.

https://www.sciencedirect.com/science/article/abs/pii/S0016703719305149

Westphal, A.J., Butterworth, A.L., Tomsick, J.A. and Gainsforth, Z., 2019. Measurement of the oxidation state of Fe in the ISM using X-ray absorption spectroscopy. The Astrophysical Journal872(1), p.66.

https://iopscience.iop.org/article/10.3847/1538-4357/aafb3b/meta

2018

Aylett, T., Brooke, J.S.A., Carrillo Sánchez, J.D., Feng, W., Marsh, D.R. and Plane, J.M., 2018, December. Atmospheric Impacts of a Close Cometary Encounter. In AGU Fall Meeting Abstracts.

https://ui.adsabs.harvard.edu/abs/2018AGUFMSA31C3461A/abstract

Battandier, M., Bonal, L., Quirico, E., Beck, P., Engrand, C., Duprat, J. and Dartois, E., 2018. Characterization of the organic matter and hydration state of Antarctic micrometeorites: A reservoir distinct from carbonaceous chondrites. Icarus306, pp.74-93.

https://www.sciencedirect.com/science/article/abs/pii/S0019103517305249

Bentley, H.D., 2018. Investigation of an Unusual Thin Layer Descending Through the Upper Stratosphere.

https://digitalcommons.usu.edu/phys_capstoneproject/71/

Bones, D.L., Gómez Martín, J.C., Carrillo Sánchez, J.D., Dobson, A.J. and Plane, J.M.C., 2018. Characterization of the extraterrestrial magnesium source in the atmosphere using a meteoric ablation simulator. Geophysical Research Letters45(15), pp.7765-7771.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL077427

Evans, C., McCubbin, F., Zeigler, R., Allton, J., Fries, M., Righter, K., Zolensky, M., Harrington, A., Regberg, A. and Mitchell, J., 2018. NASA's Astromaterials Acquisition and Curation Office: Enabling 50 Years of Lunar and Planetary Research, Now Heading to Mars.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20180004769.pdf

Koschny, D., Soja, R.H., Engrand, C., Flynn, G.J., Lasue, J., Levasseur-Regourd, A.C., Malaspina, D., Nakamura, T., Poppe, A.R., Sterken, V.J. and Trigo-Rodríguez, J.M., 2019. Interplanetary dust, meteoroids, meteors and meteorites. Space Science Reviews215(4), p.34.

https://link.springer.com/article/10.1007/s11214-019-0597-7

Levasseur-Regourd, A.C., Baruteau, C., Lasue, J. and Renard, J.B., 2019, July. Joining efforts between studies of cometary dust and meteoroids?

https://hal-ensta-paris.archives-ouvertes.fr/LATMOS/insu-02155764v1

Lukianova, R., Kozlovsky, A. and Lester, M., 2018. Recognition of meteor showers from the heights of ionization trails. Journal of Geophysical Research: Space Physics123(8), pp.7067-7076.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025706

Messenger, S., Clemett, S., Nakamura-Messenger, K. and Nguyen, A., 2018, July. Primordial organic matter in comets and asteroids. In 42nd COSPAR Scientific Assembly (Vol. 42).

https://ui.adsabs.harvard.edu/abs/2018cosp...42E2268M/abstract

Nakamura-Messenger, K., 2018. Precious Dust Two Mission Converge on Asteroid Sample Returns.

https://ntrs.nasa.gov/search.jsp?R=20180004758

Nittler, L.R., Alexander, C.M.D., Davidson, J., Riebe, M.E., Stroud, R.M. and Wang, J., 2018. High abundances of presolar grains and 15N-rich organic matter in CO3. 0 chondrite dominion range 08006. Geochimica et cosmochimica acta226, pp.107-131.

https://www.sciencedirect.com/science/article/abs/pii/S0016703718300681

Papike, J.J. ed., 2018. Planetary materials (Vol. 36). Walter de Gruyter GmbH & Co KG.

https://books.google.com/books?hl=en&lr=&id=9a96DwAAQBAJ&oi=fnd&pg=PR2&dq=cosmic+dust+particles+stratosphere&ots=W-FTF4QObi&sig=dUxigzReDOD2dpTxKePMIpcGQF0#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Plane, J.M., Flynn, G.J., Määttänen, A., Moores, J.E., Poppe, A.R., Carrillo-Sanchez, J.D. and Listowski, C., 2018. Impacts of cosmic dust on planetary atmospheres and surfaces. Space Science Reviews214(1), p.23.

https://link.springer.com/article/10.1007/s11214-017-0458-1

Rodrigues, D., Negri, A.E., Balpardo, C., Arazi, A., Faestermann, T., Niello, J.O.F., Fimiani, L., Guzmán, J.M.G., Hain, K., Korschinek, G. and Ludwig, P., 2018. Assessment of 53Mn deposition on Earth via accelerator mass spectrometry. Applied Radiation and Isotopes140, pp.342-346.

https://www.sciencedirect.com/science/article/abs/pii/S0969804317313763

Rubin, A.E., 2018. Mechanisms accounting for variations in the proportions of carbonaceous and ordinary chondrites in different mass ranges. Meteoritics & Planetary Science53(10), pp.2181-2192.

https://onlinelibrary.wiley.com/doi/abs/10.1111/maps.13117

Snead, C.J., McCubbin, F.M., Nakamura-Messenger, K. and Righter, K., 2018. Advances in Small Particle Handling of Astromaterials in Preparation for OSIRIS-REx and Hayabusa2: Initial Developments.

https://ntrs.nasa.gov/search.jsp?R=20180002599

Snead, C., McCubbin, F., Jang, J., Cowden, T. and Rahman, Z., 2018. Advanced Curation Development of Tools and Methods for Microparticle Curation.

https://ntrs.nasa.gov/search.jsp?R=20190000016

Yabuta, H., Sandford, S.A. and Meech, K.J., 2018. Organic molecules and volatiles in comets. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology14(2), pp.101-106.

https://pubs.geoscienceworld.org/msa/elements/article-abstract/14/2/101/530219

Yang, H. and Ishiguro, M., 2018. Evolution of cometary dust particles to the orbit of the Earth: Particle size, shape, and mutual collisions. The Astrophysical Journal854(2), p.173.

https://iopscience.iop.org/article/10.3847/1538-4357/aaab59/meta

Zeigler, R.A. and McCubbin, F.M., 2018. Curating NASA's Past, Present, and Future Extraterrestrial Sample Collections.

http://www.euro-cares.eu/files/WP3_Vienna/Presentations/Zeigler_EUROCARES_WP3_2016_PRESENTATION.pdf

2017

Anufriev, G.S., 2017. Cosmic dust in modern ferromanganese nodules. Solar System Research51(2), pp.150-156.

https://link.springer.com/article/10.1134/S0038094617020010

Carrillo Sánchez, J.D., 2017. Meteoric Ablation in Planetary Atmospheres (Doctoral dissertation, University of Leeds).

http://etheses.whiterose.ac.uk/16867/

Flynn, G.J. and Wirick, S., The Interplanetary Dust Contribution to Planetary Surfaces & Atmospheres.

https://indico.bnl.gov/event/3195/contributions/9084/attachments/8046/9878/Flynn.pdf

Genge, M.J., 2017. The entry heating and abundances of basaltic micrometeorites. Meteoritics & Planetary Science52(5), pp.1000-1013.

https://onlinelibrary.wiley.com/doi/full/10.1111/maps.12830

Messenger, S., Nakamura-Messenger, K., Keller, L., Nguyen, A. and Clemett, S., 2017. Interstellar and Solar Nebula Materials in Cometary Dust.

https://www.cps-jp.org/~dust/Program_files/dust10.pdf

Pack, A., Höweling, A., Hezel, D.C., Stefanak, M.T., Beck, A.K., Peters, S.T., Sengupta, S., Herwartz, D. and Folco, L., 2017. Tracing the oxygen isotope composition of the upper Earth's atmosphere using cosmic spherules. Nature communications8(1), pp.1-7.

https://www.nature.com/articles/ncomms15702

Powell, J., 2017. Fireballs. In Cosmic Debris (pp. 109-118). Springer, Cham.

https://link.springer.com/chapter/10.1007/978-3-319-51016-3_5

Schütze, K., Wilson, J.C., Weinbruch, S., Benker, N., Ebert, M., Weigel, R. and Borrmann, S., 2017. Sub 500 nm refractory carbonaceous particles in the polar stratosphere.

https://juser.fz-juelich.de/record/838131/files/acp-2017-278.pdf

Wooden, D.H., Ishii, H.A. and Zolensky, M.E., 2017. Cometary dust: the diversity of primitive refractory grains. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences375(2097), p.20160260.

https://royalsocietypublishing.org/doi/full/10.1098/rsta.2016.0260

Wozniakiewicz, P.J., 2017. Cosmic dust in space and on Earth. Astronomy and Geophysics58(1).

https://kar.kent.ac.uk/61400/1/Cosmic%20dust%20in%20space%20and%20on%20Earth.pdf

2016

Brownlee, D.E., 2016. Cosmic dust: building blocks of planets falling from the sky. Elements12(3), pp.165-170.

https://pubs.geoscienceworld.org/msa/elements/article-abstract/12/3/165/137667

Collectors, S.S., 2016, NASA'S COSMIC DUST PROGRAM: COLLECTING DUST SINCE 1981.

http://www.elementsmagazine.org/archives/e12_3/e12_3_dep_cosmoelements.pdf

Draper, D.S., 2016. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research.

https://ntrs.nasa.gov/search.jsp?R=20160002654

Floss, C. and Haenecour, P., 2016. Presolar silicate grains: Abundances, isotopic and elemental compositions, and the effects of secondary processing. Geochemical Journal50(1), pp.3-25.

https://www.jstage.jst.go.jp/article/geochemj/50/1/50_2.0377/_article/-char/ja/

Flynn, G.J., Nittler, L.R. and Engrand, C., 2016. Composition of cosmic dust: sources and implications for the early solar system. Elements12(3), pp.177-183.

https://pubs.geoscienceworld.org/msa/elements/article-abstract/12/3/177/137680/Composition-of-Cosmic-Dust-Sources-and?redirectedFrom=fulltext

Genge, M.J., 2016. The origins of I‐type spherules and the atmospheric entry of iron micrometeoroids. Meteoritics & Planetary Science51(6), pp.1063-1081.

https://onlinelibrary.wiley.com/doi/full/10.1111/maps.12645

Hilchenbach, M., Kissel, J., Langevin, Y., Briois, C., Von Hoerner, H., Koch, A., Schulz, R., Silén, J., Altwegg, K., Colangeli, L. and Cottin, H., 2016. Comet 67P/Churyumov–Gerasimenko: close-up on dust particle fragments. The Astrophysical Journal Letters816(2), p.L32.

https://iopscience.iop.org/article/10.3847/2041-8205/816/2/L32

Hu, Z.W. and Winarski, R.P., 2016. In situ 3‐D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X‐ray nanotomography. Meteoritics & Planetary Science51(9), pp.1632-1642.

https://onlinelibrary.wiley.com/doi/full/10.1111/maps.12674

Plane, J., Janches, D., Gomez-Martin, J.C., Bones, D., Diego Carrillo-Sanchez, J., James, S., Nesvorny, D. and Pokorny, P., 2016, July. How large is the cosmic dust flux into the Earth's atmosphere?. In 41st COSPAR Scientific Assembly (Vol. 41).

https://ui.adsabs.harvard.edu/abs/2016cosp...41E1569P/abstract

Rietmeijer, F.J.M., Della Corte, V., Ferrari, M., Rotundi, A. and Brunetto, R., 2016. Laboratory analyses of meteoric debris in the upper stratosphere from settling bolide dust clouds. Icarus266, pp.217-234.

https://www.sciencedirect.com/science/article/abs/pii/S0019103515005060

Rudraswami, N.G., Prasad, M.S., Dey, S., Plane, J.M.C., Feng, W., Carrillo-Sánchez, J.D. and Fernandes, D., 2016. Ablation and chemical alteration of cosmic dust particles during entry into the Earth's atmosphere. The Astrophysical Journal Supplement Series227(2), p.15.

https://iopscience.iop.org/article/10.3847/0067-0049/227/2/15/pdf

Sandford, S.A., Engrand, C. and Rotundi, A., 2016. Organic matter in cosmic dust. Elements12(3), pp.185-189.

https://pubs.geoscienceworld.org/msa/elements/article-abstract/12/3/185/137683

Snead, C.J., 2016. Ion probe measurements of comet dust: Investigating oxygen isotope heterogeneity in the solar system. University of California, Los Angeles.

https://search.proquest.com/openview/6eaceff668cf8b3fee11dd059c28f5c9/1?pq-origsite=gscholar&cbl=18750&diss=y

Taylor, S., Messenger, S. and Folco, L., 2016. Cosmic dust: finding a needle in a haystack. Elements12(3), pp.171-176.

https://pubs.geoscienceworld.org/msa/elements/article-abstract/12/3/171/137670

Westphal, A.J., Herzog, G.F. and Flynn, G.J., 2016. Cosmic dust toolbox: microanalytical instruments and methods. Elements12(3), pp.197-202.

https://pubs.geoscienceworld.org/msa/elements/article-abstract/12/3/197/137694

Zolensky, M.E., 2016. NASA's cosmic dust program: collecting dust since 1981. Elements, pp.159-160.

http://elementsmagazine.org/2016/06/16/nasas-cosmic-dust-program-collecting-dust-since-1981/

2015

Engrand, C., Duprat, J., Bardin, N., Dartois, E., Leroux, H., Quirico, E., Benzerara, K., Remusat, L., Dobrică, E., Delauche, L. and Bradley, J., 2015. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites. Proceedings of the International Astronomical Union11(A29A), pp.253-256.

https://www.cambridge.org/core/journals/proceedings-of-the-international-astronomical-union/article/asteroidcomet-continuum-from-laboratory-and-space-analyses-of-comet-samples-and-micrometeorites/6CE191D0D52CD8708D9BF6CD025AC76C

Gómez-Guzmán, J.M., Bishop, S., Faestermann, T., Famulok, N., Fimiani, L., Hain, K., Jahn, S., Korschinek, G., Ludwig, P. and Rodrigues, D., 2015. Accretion rate of extraterrestrial 41Ca in Antarctic snow samples. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms361, pp.620-626.

https://www.sciencedirect.com/science/article/abs/pii/S0168583X15004875

Messenger, S., Nakamura‐Messenger, K., Keller, L.P. and Clemett, S.J., 2015. Pristine stratospheric collection of interplanetary dust on an oil‐free polyurethane foam substrate. Meteoritics & Planetary Science50(8), pp.1468-1485.

https://onlinelibrary.wiley.com/doi/full/10.1111/maps.12473

Rudraswami, N.G., Prasad, M.S., Nagashima, K. and Jones, R.H., 2015. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites. Geochimica et Cosmochimica Acta164, pp.53-70.

https://www.sciencedirect.com/science/article/abs/pii/S0016703715002732

Wainwright, M., Rose, C.E., Baker, A.J., Wickramasinghe, N.C. and Omairi, T., 2015. Biological entities isolated from two stratosphere launches-continued evidence for a space origin. Journal of Astrobiology & Outreach, pp.1-5.

http://physics.ruh.ac.lk/astrobiology/pdf/biological_entities_isolated_from_stratosphere.pdf

2014

Bastien, R., Burkett, P.J., Rodriquez, M., Frank, D., Gonzalez, C., Robinson, G.A., Zolensky, M., Brown, P., Campbell-Brown, M., Broce, S. and Kapitzke, M., 2014. Collecting Comet Samples by ER-2 Aircraft: Cosmic Dust Collection During the Draconid Meteor Shower in October 2012.

https://ntrs.nasa.gov/search.jsp?R=20150003807

Bradley, J.P., Ishii, H.A., Gillis-Davis, J.J., Ciston, J., Nielsen, M.H., Bechtel, H.A. and Martin, M.C., 2014. Detection of solar wind-produced water in irradiated rims on silicate minerals. Proceedings of the National Academy of Sciences111(5), pp.1732-1735.

https://www.pnas.org/content/111/5/1732.short

Cordier, C. and Folco, L., 2014. Oxygen isotopes in cosmic spherules and the composition of the near Earth interplanetary dust complex. Geochimica et Cosmochimica Acta146, pp.18-26.

https://www.sciencedirect.com/science/article/abs/pii/S0016703714005961

Dawkins, E., 2014. Space-borne observations of meteoric metal layers in the upper atmosphere (Doctoral dissertation, University of Leeds).

http://etheses.whiterose.ac.uk/8002/

Della Corte, V., Rietmeijer, F.J., Rotundi, A. and Ferrari, M., 2014. Introducing a new stratospheric dust-collecting system with potential use for upper atmospheric microbiology investigations. Astrobiology14(8), pp.694-705.

https://www.liebertpub.com/doi/abs/10.1089/ast.2014.1167

Floss, C., Le Guillou, C. and Brearley, A., 2014. Coordinated NanoSIMS and FIB-TEM analyses of organic matter and associated matrix materials in CR3 chondrites. Geochimica et Cosmochimica Acta139, pp.1-25.

https://www.sciencedirect.com/science/article/abs/pii/S0016703714002816

Katyal, N., Banerjee, V. and Puri, S., 2014. Fractal signatures in analogs of interplanetary dust particles. Journal of Quantitative Spectroscopy and Radiative Transfer146, pp.290-294.

https://www.sciencedirect.com/science/article/abs/pii/S0022407314000272

Kobayashi, K., 2014. Capture of cosmic dusts and exposure of organics on the International Space Station: Objectives of the Tanpopo Mission. In 40th COSPAR Scientific Assembly (Vol. 40).

https://ui.adsabs.harvard.edu/abs/2014cosp...40E1537K/abstract

Murphy, D.M., Froyd, K.D., Schwarz, J.P. and Wilson, J.C., 2014. Observations of the chemical composition of stratospheric aerosol particles. Quarterly Journal of the Royal Meteorological Society140(681), pp.1269-1278.

https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.2213

Potashko, O. and Viso, M., 2014. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons. In 40th COSPAR Scientific Assembly (Vol. 40).

https://ui.adsabs.harvard.edu/abs/2014cosp...40E2610P/abstract

Rudraswami, N.G., Prasad, M.S., Babu, E.V.S.S.K. and Kumar, T.V., 2014. Chemistry and petrology of Fe–Ni beads from different types of cosmic spherules: Implication for precursors. Geochimica et Cosmochimica Acta145, pp.139-158.

https://www.sciencedirect.com/science/article/abs/pii/S0016703714005833

Rudraswami, N.G., Prasad, M.S., Plane, J.M.C., Berg, T., Feng, W. and Balgar, S., 2014. Refractory metal nuggets in different types of cosmic spherules. Geochimica et Cosmochimica Acta131, pp.247-266.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.968.2824&rep=rep1&type=pdf

Spring, N., 2014. Investigating the Origin and Distribution of Primordial Noble Gases and Volatiles in Asteroids and Comets: A Comparative Study of Interplanetary Dust Particles (IDPs), Antarctic Micrometeorites (AMMs) and Carbonaceous Chondrites (Doctoral dissertation, The University of Manchester (United Kingdom)).

https://www.research.manchester.ac.uk/portal/files/54561741/FULL_TEXT.PDF

Stansbery, E., 2014. ARES Biennial Report 2012 Final.

https://ntrs.nasa.gov/search.jsp?R=20140011750

Starkey, N.A., Franchi, I.A. and Lee, M.R., 2014. Isotopic diversity in interplanetary dust particles and preservation of extreme 16O-depletion. Geochimica et Cosmochimica Acta142, pp.115-131.

https://ui.adsabs.harvard.edu/abs/2012cosp...39.2181Y/abstract

Wiesman, H., 2014. Survey of ‘Low-Z’Particles from the Interplanetary Dust Collection in Search of IDPs.

https://openscholarship.wustl.edu/cgi/viewcontent.cgi?article=1015&context=undergrad_open

2013

Bradley, J.P., 2013. How and where did GEMS form?. Geochimica et Cosmochimica Acta107, pp.336-340.

https://www.sciencedirect.com/science/article/abs/pii/S0016703712006643

Burton, M.G., Cui, X. and Tothill, 2013, N.F.H., Cometary dust in Antarctic micrometeorites.

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S1743921312016766

Corte, V.D., Rietmeijer, F.J., Rotundi, A., Ferrari, M. and Palumbo, P., 2013. Meteoric CaO and carbon smoke particles collected in the upper stratosphere from an unanticipated source. Tellus B: Chemical and Physical Meteorology65(1), p.20174.

https://www.tandfonline.com/doi/full/10.3402/tellusb.v65i0.20174

Flynn, G.J., Wirick, S. and Keller, L.P., 2013. Organic grain coatings in primitive interplanetary dust particles: Implications for grain sticking in the Solar Nebula. Earth, Planets and Space65(10), p.13.

https://link.springer.com/article/10.5047/eps.2013.05.007

Keller, L.P. and Messenger, S., 2013. On the origins of GEMS grains: A reply. Geochimica et Cosmochimica Acta107, pp.341-344.

https://www.sciencedirect.com/science/article/abs/pii/S0016703712006655

Mapper, D. and Smales, A.A., 2013. RECOVERED EXTRATERRESTRIAL MATERIAL. Analytical Chemistry in Space: International Series of Monographs in Analytical Chemistry, p.209.

https://books.google.com/books?hl=en&lr=&id=CtD9BAAAQBAJ&oi=fnd&pg=PA209&dq=cosmic+dust+particles+stratosphere&ots=1q8ngyTUQN&sig=IX87alLnJNJ9YqVPDn5QksQYMuE#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Merouane, S., Djouadi, Z. and d'Hendecourt, L.L.S., 2013. Relations between aliphatics and silicate components in 12 stratospheric particles deduced from vibrational spectroscopy. The Astrophysical Journal780(2), p.174.

https://iopscience.iop.org/article/10.1088/0004-637X/780/2/174/meta

Plane, J., 2013, April. The cosmic dust input to the Earth's atmosphere. In The cosmic dust input to the Earth's atmosphere

https://ui.adsabs.harvard.edu/abs/2013EGUGA..15.5280P/abstract

Rietmeijer, F.J.M., Della Corte, V., Rotundi, A. and Ferrari, M., 2013. Sampling the constant drizzle of meteoric dust in the upper stratosphere. METEOROIDS 2013, p.147.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.924.4929&rep=rep1&type=pdf#page=159

Vicenzi, E.P., 2013. Microanalysis of Cosmic Dust: Nanometre-Scale Imaging and Analysis in the SEM. In Book of Tutorials and Abstracts: EMAS 2013, 13th European Workshop on Modern Developments and Applications in Microbeam Analysis, 12 to 16 May 2013 at the Centro de Congressos do Alfandega, Porto, Portugal. European Microbeam Analysis Society.

https://repository.si.edu/bitstream/handle/10088/75516/Vicenzi-Microanalysis%20of%20Cosmic%20Dust.pdf

2012

Bigg, E.K., 2012. Sources of insoluble inclusions in stratospheric sulfate particles. Meteoritics & Planetary Science47(5), pp.799-805.

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1945-5100.2012.01346.x

Ciucci, A., Palumbo, P., Brunetto, R., Della Corte, V., De Angelis, S., Rotundi, A., Rietmeijer, F.J.M., Zona, E., Colangeli, L., Esposito, F. and Epifani, E.M., DUSTER (Dust in the Upper Stratosphere Tracking Experiment and Retrieval).

https://www.academia.edu/download/46342309/DUSTER_Dust_in_the_Upper_Stratosphere_T20160608-6154-ge3hty.pdf

Cordier, C., Suavet, C., Folco, L., Rochette, P. and Sonzogni, C., 2012. HED-like cosmic spherules from the Transantarctic Mountains, Antarctica: Major and trace element abundances and oxygen isotopic compositions. Geochimica et Cosmochimica Acta77, pp.515-529.

https://www.sciencedirect.com/science/article/abs/pii/S0016703711006089

Ferronsky, V.I. and Polyakov, V.A., 2012. Origin and Production of Cosmogenic Radioisotopes. In Isotopes of the Earth's Hydrosphere (pp. 215-226). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-007-2856-1_12

FLYNN, G., HENNING, T., KELLER, L. and MUTSCHKE, H., 2012. SUNY, Plattsburgh, NY 12901, USA. Optics of Cosmic Dust79, p.37.

https://books.google.com/books?hl=en&lr=&id=Wd9sCQAAQBAJ&oi=fnd&pg=PA37&dq=cosmic+dust+particles+stratosphere&ots=PuoU_sQ7zs&sig=FT3pEZivbpa1So-T5w5GIDqiOnQ#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Giardino, M., Braga, V.F., De Sanctis, M.C., Capria, M.T. and De Angelis, S., 2012, September. An interactive service for cosmic dust catalogs at the IDIS Small Bodies and Dust Node. In European Planetary Science Congress 2012.

https://meetingorganizer.copernicus.org/EPSC2012/EPSC2012-420.pdf

Heard, D.E. and Saiz-Lopez, A., 2012. Atmospheric chemistry. Chemical Society Reviews41(19), pp.6229-6230.

https://pubs.rsc.org/en/content/articlehtml/2012/cs/c2cs90076a

Hemenway, C.L., 2012. METEoRs AND METEORITEs 271. Transactions of the International Astronomical Union: Reports on Astronomy, p.271.

https://books.google.com/books?hl=en&lr=&id=njvwCAAAQBAJ&oi=fnd&pg=PA271&dq=cosmic+dust+particles+stratosphere&ots=PlTwu6nRFX&sig=QjV8pGSULFJLz9F0zBCIVsw6BqA#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Imae, N., 2012. Cometary dust in Antarctic micrometeorites. Proceedings of the International Astronomical Union8(S288), pp.123-129.

https://www.cambridge.org/core/journals/proceedings-of-the-international-astronomical-union/article/cometary-dust-in-antarctic-micrometeorites/0DCA52B30246D64317CF674946E80E13

Jones, W.C., 2012. Precision CMB measurements from long duration stratospheric balloons: Towards B-modes and inflation. Proceedings of the International Astronomical Union8(S288), pp.53-60.

https://www.cambridge.org/core/journals/proceedings-of-the-international-astronomical-union/article/precision-cmb-measurements-from-long-duration-stratospheric-balloons-towards-bmodes-and-inflation/78AC0CD1247717278BECD83AB2CECBA3

Levasseur-Regourd, A.C. and Hasegawa, H. eds., 2012. Origin and Evolution of Interplanetary Dust: Proceedings of the 126th Colloquium of the International Astronomical Union, Held in Kyoto, Japan, August 27–30, 1990 (Vol. 173). Springer Science & Business Media.

LINK

Matrajt, G., Messenger, S., Brownlee, D. and Joswiak, D., 2012. Diverse forms of primordial organic matter identified in interplanetary dust particles. Meteoritics & Planetary Science47(4), pp.525-549.

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1945-5100.2011.01310.x

Messenger, S., Keller, L.P., Nakamura-Messenger, K. and Clemett, S.J., 2012. Pristine Stratospheric Collections of Cosmic Dust.

https://ntrs.nasa.gov/search.jsp?R=20120001837

MUKHOPADHYAY, S., S. MESSENGER', FJ STADERMANN', C. FLOSS", LR NITTLERâ€�. 2012, December. In Solar System History from Isotopic Signatures of Volatile Elements: Volume Resulting from an ISSI Workshop 14–18 January 2002, Bern, Switzerland (Vol. 16, pp. 155-172). Springer Science & Business Media.

https://books.google.com/books?hl=en&lr=&id=A-LzCAAAQBAJ&oi=fnd&pg=PA155&dq=cosmic+dust+particles+stratosphere&ots=x3HuEYNNxz&sig=Le7xHJUFb9HKM7vfSYRO7CEfeig#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Munoz Caro, G.M., Rietmeijer, F.J., SOUZA‐EGIPSY, V. and VALLES‐GONZÁLEZ, M.P., 2012. A potentially new type of nonchondritic interplanetary dust particle with hematite, organic carbon, amorphous Na, Ca‐aluminosilicate, and FeO‐spheres. Meteoritics & Planetary Science47(2), pp.248-261.

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1945-5100.2011.01323.x

Nuth, J.A., Nelson, R.N., Moore, M. and Donn, B., 2012, December. " Code 691, NASA/GSFC, Greenbelt., USA. In Experiments on Cosmic Dust Analogues: Proceedings of the Second International Workshop of the Astronomical Observatory of Capodimonte (OAC 2), held at Capri, Italy, September 8–12. 1987 (Vol. 149, p. 191). Springer Science & Business Media.

https://books.google.com/books?hl=en&lr=&id=Rd3qCAAAQBAJ&oi=fnd&pg=PA191&dq=cosmic+dust+particles+stratosphere&ots=HelfWiEat4&sig=mK5vBYapG5ZrB9TS_nN5vfe2J3Q#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Osawa, T., 2012. Solar wind noble gases in micrometeorites. Exploring the solar wind, pp.121-140.

http://oro.open.ac.uk/30368/

Plane, J.M., 2012. Cosmic dust in the Earth's atmosphere. Chemical Society Reviews41(19), pp.6507-6518.

https://pubs.rsc.org/en/content/articlehtml/2012/cs/c2cs35132c

Rudraswami, N.G., Prasad, M.S., Babu, E.V.S.S.K., Kumar, T.V., Feng, W. and Plane, J.M.C., 2012. Fractionation and fragmentation of glass cosmic spherules during atmospheric entry. Geochimica et Cosmochimica Acta99, pp.110-127.

https://www.sciencedirect.com/science/article/abs/pii/S001670371200542X

SANDFORD, S., 2012, December. Mail Stop 245-6. In Origin and Evolution of Interplanetary Dust: Proceedings of the 126th Colloquium of the International Astronomical Union, Held in Kyoto, Japan, August 27–30, 1990 (Vol. 173, p. 397). Springer Science & Business Media.

https://books.google.com/books?hl=en&lr=&id=Fj_wCAAAQBAJ&oi=fnd&pg=PA397&dq=cosmic+dust+particles+stratosphere&ots=B49Ql0O2gf&sig=3XuyD5PqS-f38couUw1ehQLsKII#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Weiss-Wrana, K., Giese, R.H. and Zerull, R.H., 2012, December. Bereich Extraterrestrische Physik. In Properties and Interactions of Interplanetary Dust: Proceedings of the 85th Colloquium of the International Astronomical Union, Marseille, France, July 9–12, 1984 (Vol. 119, p. 219). Springer Science & Business Media.

https://books.google.com/books?hl=en&lr=&id=rHHwCAAAQBAJ&oi=fnd&pg=PA223&dq=cosmic+dust+particles+stratosphere&ots=ce3XM1gTKw&sig=oC-xvfBWrurb4CLyNwNxVQVxfXQ#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Yabuta, H., 2012, July. Organic chemistry of cosmic dusts for understanding an intra-relationship between meteorites and comets: Toward a new frontier of astromaterial science. In 39th COSPAR Scientific Assembly (Vol. 39, p. 2181).

https://ui.adsabs.harvard.edu/abs/2012cosp...39.2181Y/abstract

2011

Allen, C., Allton, J., Lofgren, G., Righter, K. and Zolensky, M., 2011. Curating NASA's extraterrestrial samples—Past, present, and future. Geochemistry71(1), pp.1-20.

https://www.sciencedirect.com/science/article/pii/S0009281911000031

Brunetto, R., Borg, J., Dartois, E., Rietmeijer, F.J.M., Grossemy, F., Sandt, C., d’Hendecourt, L.L.S., Rotundi, A., Dumas, P., Djouadi, Z. and Jamme, F., 2011. Mid-IR, Far-IR, Raman micro-spectroscopy, and FESEM–EDX study of IDP L2021C5: Clues to its origin. Icarus212(2), pp.896-910.

https://www.sciencedirect.com/science/article/abs/pii/S0019103511000492

Dobrică, E., Engrand, C., Quirico, E., Montagnac, G. and Duprat, J., 2011. Raman characterization of carbonaceous matter in CONCORDIA Antarctic micrometeorites. Meteoritics & Planetary Science46(9), pp.1363-1375.

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1945-5100.2011.01235.x

Engrand, C., 2011. Meteorites and cosmic dust: Interstellar heritage and nebular processes in the early solar system. In EPJ Web of Conferences (Vol. 18, p. 05001). EDP Sciences.

https://www.epj-conferences.org/articles/epjconf/abs/2011/08/epjconf_cma2011_05001/epjconf_cma2011_05001.html

Keller, L.P. and Messenger, S., 2011. On the origins of GEMS grains. Geochimica et Cosmochimica Acta75(18), pp.5336-5365.

https://www.sciencedirect.com/science/article/abs/pii/S0016703711003784

Köhler, M., Guillet, V. and Jones, A., 2011. Aggregate dust connections and emissivity enhancements. Astronomy & Astrophysics528, p.A96.

https://www.aanda.org/articles/aa/abs/2011/04/aa16379-10/aa16379-10.html

Pepin, R.O., Palma, R.L., Gehrz, R.D. and Starrfield, S., 2011. Presolar grains from novae: evidence from neon and helium isotopes in comet dust collections. The Astrophysical Journal742(2), p.86.

https://iopscience.iop.org/article/10.1088/0004-637X/742/2/86/meta

Saunders, R.W. and Plane, J.M., 2011. A photo-chemical method for the production of olivine nanoparticles as cosmic dust analogues. Icarus212(1), pp.373-382.

https://www.sciencedirect.com/science/article/abs/pii/S0019103510004872

ShyamPrasad, M. and Rudraswami, N.G., 2011. Micrometeorites: Extraterrestrial particulate matter on the earth.

http://drs.nio.org/drs/handle/2264/3950

Starkey, N., INVESTIGATING RAMAN VARIATION ACROSS LARGE CLUSTER INTERPLANETARY DUST.

https://pdfs.semanticscholar.org/1e20/6d4c758342bdd3f524c24cc14ab362a81d27.pdf

Starkey, N.A. and Franchi, I.A., 2011. Investigating Raman variation across large cluster interplanetary dust particles.

http://oro.open.ac.uk/30368/

2010

Caruana, D.J. and Holt, K.B., 2010. Astroelectrochemistry: the role of redox reactions in cosmic dust chemistry. Physical Chemistry Chemical Physics12(13), pp.3072-3079.

https://pubs.rsc.org/en/content/articlelanding/2010/cp/b917817a/unauth#!divAbstract

Ciucci, A., Rietmeijer, F.J.M., Della Corte, V., Brunetto, R., de Angelis, S., Palumbo, P. and Rotundi, A., 2010, September. Collecting dust in the upper stratosphere at high latitudes: Constraints on the compositions of cosmic dust particles. In Proceedings European Planetary Science Congress (Vol. 1, p. 175).

https://meetingorganizer.copernicus.org/EPSC2010/EPSC2010-175.pdf

Hanner, M.S. and Zolensky, M.E., 2010. The mineralogy of cometary dust. In Astromineralogy (pp. 203-232). Springer, Berlin, Heidelberg.

https://link.springer.com/chapter/10.1007/978-3-642-13259-9_4

Lasue, J., Stepinski, T. and Bell, S.W., 2010. Automated classification of interplanetary dust particles: Johnson Space Center Cosmic Dust Catalog Volume 15. Meteoritics & Planetary Science45(5), pp.783-797.

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1945-5100.2010.01059.x

McNamara, K.M., 2010. Sample Return: What happens to samples on Earth?, In Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments (pp. 1437-1449).

https://ascelibrary.org/doi/abs/10.1061/41096(366)129

Nakamura-Messenger, K., Keller, L.P., Clemett, S.J., Messenger, S., Jones, J.H., Palma, R.L., Pepin, R.O., Klöck, W., Zolensky, M.E. and Tatsuoka, H., 2010. Brownleeite: A new manganese silicide mineral in an interplanetary dust particle. American Mineralogist95(2-3), pp.221-228.

https://pubs.geoscienceworld.org/msa/ammin/article-abstract/95/2-3/221/45037

Ogliore, R.C., Butterworth, A.L., Fakra, S.C., Gainsforth, Z., Marcus, M.A. and Westphal, A.J., 2010. Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles. Earth and Planetary Science Letters296(3-4), pp.278-286.

https://www.sciencedirect.com/science/article/abs/pii/S0012821X10003298

2009

Aléon, J., Engrand, C., Leshin, L.A. and McKeegan, K.D., 2009. Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets. Geochimica et Cosmochimica Acta73(15), pp.4558-4575.

https://www.sciencedirect.com/science/article/abs/pii/S0016703709002920

Brook, E.J., Kurz, M.D. and Curtice, J., 2009. Flux and size fractionation of 3He in interplanetary dust from Antarctic ice core samples. Earth and Planetary Science Letters286(3-4), pp.565-569.

https://www.sciencedirect.com/science/article/abs/pii/S0012821X09004397

Dobricǎ, E., Engrand, C., Duprat, J., Gounelle, M., Leroux, H., Quirico, E. and Rouzaud, J.N., 2009. Connection between micrometeorites and Wild 2 particles: From Antarctic snow to cometary ices. Meteoritics & Planetary Science44(10), pp.1643-1661.

http://adsabs.harvard.edu/full/2007ESASP.643..141J

Doi, M. and Nakamoto, T., 2009, August. Origin of Cavities in Cosmic Spherules. In AIP Conference Proceedings (Vol. 1158, No. 1, pp. 121-122). American Institute of Physics.

https://aip.scitation.org/doi/abs/10.1063/1.3215812

Ermakov, V.I., Okhlopkov, V.P. and Stozhkov, Y.I., 2009. Influence of cosmic rays and cosmic dust on the atmosphere and Earth's climate. Bulletin of the Russian Academy of Sciences: Physics73(3), pp.416-418.

https://link.springer.com/article/10.3103/S1062873809030411

Guzik, T.G. and Wefel, J.P., 2009. Student Ballooning and the High Altitude Student Platform. In NSG Directors Meeting, Baton Rouge.

https://national.spacegrant.org/meetings/presentations/2009_Fall_National/HASP.pdf

Kehm, K., Crowther, S., Gilmour, J.D., Mohapatra, R.K. and Hohenberg, C.M., 2009. Upper limit concentrations of trapped xenon in individual interplanetary dust particles from the stratosphere. Meteoritics & Planetary Science44(2), pp.249-259.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2009.tb00732.x

Ortner, H.M. and Stadermann, F.J., 2009. Degradation of space exposed surfaces by hypervelocity dust bombardment, and refractory materials for space. International Journal of Refractory Metals and Hard Materials27(6), pp.949-956.

https://www.sciencedirect.com/science/article/abs/pii/S0263436809000791

Rietmeijer, F.J., 2009. The irradiation-induced olivine to amorphous pyroxene transformation preserved in an interplanetary dust particle. The Astrophysical Journal705(1), p.791.

https://iopscience.iop.org/article/10.1088/0004-637X/705/1/791/meta

Rochette, P., Weiss, B.P. and Gattacceca, J., 2009. Magnetism of extraterrestrial materials. Elements5(4), pp.223-228.

https://pubs.geoscienceworld.org/msa/elements/article-abstract/5/4/223/137821/Magnetism-of-Extraterrestrial-Materials?redirectedFrom=fulltext

Siegl, M., Holl, G., Fittock, M., Rudolph, M. and Urbár, J., 2009, June. A prototype for in-flight acquisition and post-flight analysis of stratospheric aerosols. In Proceedings of the 19th ESA Symposium on European Rocket and Balloon Programmes and Related Research, 7-11 June 2009, Bad Reichenhall, Germany (ESA SP-671, to be published).

https://www.researchgate.net/profile/Gerrit_Holl/publication/268416762_A_PROTOTYPE_FOR_IN-FLIGHT_ACQUISITION_AND_POST-FLIGHT_ANALYSIS_OF_STRATOSPHERIC_AEROSOLS/links/54cdacb20cf24601c08df4fe.pdf

Stephan, T., 2009, December. Cometary Dust Collected by Stardust and in the Stratosphere-Differences and Similarities. In Cosmic Dust-Near and Far (Vol. 414, p. 168).

http://adsabs.harvard.edu/full/2009ASPC..414..168S

Ugolnikov, O.S. and Maslov, I.A., 2009. Quadrantids 2008 and 2009: detection of dust in the atmosphere by polarization twilight sky measurements. arXiv preprint arXiv:0901.4794.

https://arxiv.org/abs/0901.4794

Wirick, S., Flynn, G.J., Keller, L.P., Nakamura‐Messenger, K., Peltzer, C., Jacobsen, C., Sandford, S. and Zolensky, M., 2009. Organic matter from comet 81P/Wild 2, IDPs, and carbonaceous meteorites; similarities and differences. Meteoritics & Planetary Science44(10), pp.1611-1626.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2009.tb01194.x

2008

Flynn, G.J., Keller, L.P., Wirick, S. and Jacobsen, C., 2008. Organic matter in interplanetary dust particles. Proceedings of the International Astronomical Union4(S251), pp.267-276.

https://www.cambridge.org/core/journals/proceedings-of-the-international-astronomical-union/article/organic-matter-in-interplanetary-dust-particles/8B01AE5B5F65DC6FBC14947EEC27A673

Gooding, J.L., 2008, NASA JOHNSON SPACE CENTER ORAL HISTORY PROJECT BIOGRAPHICAL DATA SHEET.

https://historycollection.jsc.nasa.gov/JSCHistoryPortal/history/oral_histories/WarrenJL/WarrenJL_Bio.pdf

Graham, G.A., Teslich, N.E., Kearsley, A.T., Stadermann, F.J., Stroud, R.M., Dai, Z., Ishii, H.A., Hutcheon, I.D., Bajt, S., Snead, C.J. and Weber, P.K., 2008. Applied focused ion beam techniques for sample preparation of astromaterials for integrated nanoanalysis. Meteoritics & Planetary Science43(3), pp.561-569.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2008.tb00672.x

Guaita, C. and Martegani, F., 2008. Cosmic Microsphere: a SEM study. Memorie della Societa Astronomica Italiana Supplementi12, p.110.

http://adsabs.harvard.edu/full/2008MSAIS..12..110G

Lasue, J., Stepinski, T. and Bell, S., 2008, Automated classification of interplanetary dust particles.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.652.2371&rep=rep1&type=pdf

Martin, M.P., Glavin, D.P. and Dworkin, J.P., 2008. Nanoflow Separation of Amino Acids for the Analysis of Cosmic Dust.

https://ntrs.nasa.gov/search.jsp?R=20080040865

Nakamura-Messenger, K., Keller, L.P., Clemett, S.J., Jones, J.H., Palma, R.L., Pepin, R.O., Klöck, W., Zolensky, M.E. and Messenger, S., 2008. New manganese silicide mineral phase in an interplanetary dust particle.

https://cornerstone.lib.mnsu.edu/phys_ast_fac_pubs/14/

Nakamura-Messenger, K., Keller, L.P., Messenger, S., Clemett, S.J., Zolensky, M.E., Palma, R.L., Pepin, R.O. and Wirick, S., 2008. Mineralogy of Interplanetary Dust Particles from the Coment Grigg-Skjellerup Dust Stream Collections.

https://cornerstone.lib.mnsu.edu/phys_ast_fac_pubs/12/

Sandford, S.A., Messenger, S., DiSanti, M., Keller, L. and Altwegg, K., 2008. Oxygen in comets and interplanetary dust particles. Reviews in mineralogy and geochemistry68(1), pp.247-272.

https://pubs.geoscienceworld.org/msa/rimg/article-abstract/68/1/247/87589/Oxygen-in-Comets-and-Interplanetary-Dust-Particles?redirectedFrom=fulltext

Zolensky, M., Nakamura‐Messenger, K., Rietmeijer, F., Leroux, H., Mikouchi, T., Ohsumi, K., Simon, S., Grossman, L., Stephan, T., Weisberg, M. and Velbel, M., 2008. Comparing Wild 2 particles to chondrites and IDPs. Meteoritics & Planetary Science43(1‐2), pp.261-272.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2008.tb00621.x

2007

Aronica, A., Rotundi, A., Ferrini, G., Palomba, E., Zona, E. and Colangeli, L., 2007. Combined Scanning Electron Microscope and Micro-InfraRed measurements on Interplanetary Dust Particles. arXiv preprint astro-ph/0702397.

https://arxiv.org/abs/astro-ph/0702397

Duprat, J., Engrand, C., Maurette, M., Kurat, G., Gounelle, M. and Hammer, C., 2007. Micrometeorites from central Antarctic snow: The CONCORDIA collection. Advances in Space Research39(4), pp.605-611.

https://www.sciencedirect.com/science/article/pii/S0273117706004522

Jones, A.P., 2007. The mineralogy of cosmic dust: astromineralogy. European Journal of Mineralogy19(6), pp.771-782.

https://pubs.geoscienceworld.org/eurjmin/article/19/6/771/138239/The-mineralogy-of-cosmic-dust-astromineralogy

Joswiak, D.J., Brownlee, D.E., Pepin, R.O. and Schlutter, D.J., 2007. Densities and mineralogy of cometary and asteroidal interplanetary dust particles collected in the stratosphere. Dust in Planetary Systems643, pp.141-144.

http://adsabs.harvard.edu/full/2007ESASP.643..141J

Jull, A.T., Lal, D., Taylor, S., Wieler, R., Grimberg, A., Vacher, L., McHargue, L.R., Freeman, S.P.H.T., Maden, C., Schnabel, C. and Xu, S., 2007. 3He, 20, 21, 22Ne, 14C, 10Be, 26Al, and 36Cl in magnetic fractions of cosmic dust from Greenland and Antarctica. Meteoritics & Planetary Science42(10), pp.1831-1840.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2007.tb00541.x

Kent, G.S., Sage, K.H., Trepte, C.R. and Wang, P.H., 2007. Stratospheric Aerosol and Gas Experiment III cloud data product. Applied optics46(8), pp.1261-1278.

https://www.osapublishing.org/ao/abstract.cfm?uri=ao-46-8-1261

ShyamPrasad, M., 2007. Extraterrestrial matter in the oceans.

http://drs.nio.org/drs/bitstream/handle/2264/738/Refresher_Course_Mar_Geol_Geophys_2007_Lecture_Notes_84.pdf?sequence=2

Rietmeijer, F.J., 2007. Quantitative material properties for meteoroids from interplanetary dust particles. Advances in Space Research39(4), pp.583-589.

https://www.sciencedirect.com/science/article/pii/S0273117705010380

Rietmeijer, F.J. and Nuth III, J.A., 2007. Laboratory simulation of Mg-rich ferromagnesiosilica dust: The first building blocks of comet dust. Advances in Space Research39(3), pp.351-357.

https://www.sciencedirect.com/science/article/pii/S027311770500387X

Rotundi, A., Ferrini, G., Baratta, G.A., Palumbo, M.E., Palomba, E. and Colangeli, L., 2007. Combined Micro-Infrared (IR) and Micro-Raman Measurements on Stratospheric Interplanetery Dust Particles. Dust in planetary systems643, pp.149-153.

http://adsabs.harvard.edu/full/2007ESASP.643..149R

Ugolnikov, O.S. and Maslov, I.A., 2007. Detection of Leonids meteoric dust in the upper atmosphere by polarization measurements of the twilight sky. Planetary and Space Science55(10), pp.1456-1463.

https://www.sciencedirect.com/science/article/abs/pii/S0032063307001006

Volten, H., Muñoz, O., Hovenier, J.W., Rietmeijer, F.J.M., Nuth, J.A., Waters, L.B.F.M. and Van Der Zande, W.J., 2007. Experimental light scattering by fluffy aggregates of magnesiosilica, ferrosilica, and alumina cosmic dust analogs. Astronomy & Astrophysics470(1), pp.377-386.

https://www.aanda.org/articles/aa/abs/2007/28/aa6744-06/aa6744-06.html

2006

Burchell, M.J., Mann, J., Creighton, J.A., Kearsley, A.T., Graham, G. and Franchi, I.A., 2006. Identification of minerals and meteoritic materials via Raman techniques after capture in hypervelocity impacts on aerogel. Meteoritics & Planetary Science41(2), pp.217-232.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2006.tb00205.x

Caro, G.M., Matrajt, G., Dartois, E., Nuevo, M., d'Hendecourt, L., Deboffle, D., Montagnac, G., Chauvin, N., Boukari, C. and Le Du, D., 2006. Nature and evolution of the dominant carbonaceous matter in interplanetary dust particles: effects of irradiation and identification with a type of amorphous carbon. Astronomy & Astrophysics459(1), pp.147-159.

https://www.aanda.org/articles/aa/abs/2006/43/aa2571-04/aa2571-04.html

Floss, C., Stadermann, F.J., Bradley, J.P., Bajt, S., Graham, G. and Lea, A.S., 2006. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study. Geochimica et Cosmochimica Acta70(9), pp.2371-2399.

https://www.sciencedirect.com/science/article/abs/pii/S0016703706000445

Kehm, K., Flynn, G.J. and Hohenberg, C.M., 2006. Noble gas space exposure ages of individual interplanetary dust particles. Meteoritics & Planetary Science41(8), pp.1199-1217.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2006.tb00516.x

Keller, L.P. and Messenger, S., 2006. The nature of early solar system and presolar materials. Journal of Mineralogical and Petrological Sciences101(3), pp.122-129.

https://www.jstage.jst.go.jp/article/jmps/101/3/101_3_122/_article/-char/ja/

Köhler, M., Kimura, H. and Mann, I., 2006. Applicability of the discrete-dipole approximation to light-scattering simulations of large cosmic dust aggregates. Astronomy & Astrophysics448(1), pp.395-399.

https://www.aanda.org/articles/aa/abs/2006/10/aa3332-05/aa3332-05.html

Lazzaro, D., Ferraz-Mello, S. and Fernández, J.A., 2006. Physical properties of the dust in the Solar System and its interrelation with. Asteroids, Comets, and Meteors (IAU S229)229(229), p.41.

https://books.google.com/books?hl=en&lr=&id=gHJtcvMHMQQC&oi=fnd&pg=PA41&dq=cosmic+dust+stratosphere&ots=iVzV-YMBEv&sig=BxvUPoHzb7hBzbjyWVlnsRKTR1E#v=onepage&q=cosmic%20dust%20stratosphere&f=false

Matrajt, G., Guan, Y., Leshin, L., Taylor, S., Genge, M., Joswiak, D. and Brownlee, D., 2006. Oxygen isotope measurements of individual unmelted Antarctic micrometeorites. Geochimica et cosmochimica acta70(15), pp.4007-4018.

https://www.sciencedirect.com/science/article/abs/pii/S0016703706002596

Matrajt, G., Brownlee, D., Sadilek, M. and Kruse, L., 2006. Survival of organic phases in porous IDPs during atmospheric entry: A pulse‐heating study. Meteoritics & Planetary Science41(6), pp.903-911.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2006.tb00494.x

Morlok, A., Köhler, M., Bowey, J.E. and Grady, M.M., 2006. FT–IR microspectroscopy of extraterrestrial dust grains: Comparison of measurement techniques. Planetary and Space Science54(6), pp.599-611.

https://www.sciencedirect.com/science/article/abs/pii/S003206330600033X

Rietmeijer, F.J., 2006. Fullerenes and Nanodiamonds in Aggregate Interplanetary Dust and Carbonaceous Meteorites. In Natural Fullerenes and Related Structures of Elemental Carbon (pp. 123-144). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/1-4020-4135-7_7

Rotundi, A., Rietmeijer, F.J. and Borg, J., 2006. Natural C 60 and Large Fullerenes: A Matter of Detection and Astrophysical Implications. In Natural Fullerenes and Related Structures of Elemental Carbon (pp. 71-94). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/1-4020-4135-7_5

Stadermann, F.J., Floss, C. and Wopenka, B., 2006. Circumstellar aluminum oxide and silicon carbide in interplanetary dust particles. Geochimica et Cosmochimica Acta70(24), pp.6168-6179.

https://www.sciencedirect.com/science/article/abs/pii/S0016703706019995

2005

Gounelle, M., Engrand, C., Maurette, M., Kurat, G., McKEEGAN, K.D. and BRANDSTÄTTER, F., 2005. Small Antarctic micrometeorites: A mineralogical and in situ oxygen isotope study. Meteoritics & Planetary Science40(6), pp.917-932.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2005.tb00163.x

Green, S.F., McBride, N.M., McDonnell, J.A.M., Drolshagen, G., Svedhem, H. and Bunte, K.D., 2005, September. GEO DEBRIS AND INTERPLANETARY DUST: FLUXES AND CHARGING BEHAVIOR. AL Graps1. In WORKSHOP PROGRAM AND ABSTRACTS (p. 58).

Kocifaj, M. and Horvath, H., 2005. Reevaluation of the quondam dust trend in the middle atmosphere. Applied optics44(34), pp.7378-7393.

https://www.osapublishing.org/ao/abstract.cfm?uri=AO-44-34-7378

Lal, D. and Jull, A.J., 2005. On the fluxes and fates of 3He accreted by the Earth with extraterrestrial particles. Earth and Planetary Science Letters235(1-2), pp.375-390.

https://www.sciencedirect.com/science/article/abs/pii/S0012821X05002402

Marty, B., Robert, P. and Zimmermann, L., 2005. Nitrogen and noble gases in micrometeorites. Meteoritics & Planetary Science40(6), pp.881-894.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2005.tb00161.x

Matrajt, G., Caro, G.M., Dartois, E., d'Hendecourt, L., Deboffle, D. and Borg, J., 2005. FTIR analysis of the organics in IDPs: Comparison with the IR spectra of the diffuse interstellar medium. Astronomy & Astrophysics433(3), pp.979-995.

https://www.aanda.org/articles/aa/abs/2005/15/aa1605/aa1605.html

Rietmeijer, F.J., 2005. Interplanetary dust and carbonaceous meteorites: constraints on porosity, mineralogy and chemistry of meteors from rubble-pile planetesimals. In Modern Meteor Science An Interdisciplinary View (pp. 321-338). Springer, Dordrecht.

Rietmeijer, F.J., 2005. Iron-sulfides and layer silicates: a new approach to aqueous processing of organics in interplanetary dust particles, CI and CM meteorites. Advances in Space Research36(2), pp.201-208.

https://www.sciencedirect.com/science/article/pii/S0273117704008956

2004

Flynn, G.J., 2004. Physical properties of meteorites and interplanetary dust particles: Clues to the properties of the meteors and their parent bodies. Earth, Moon, and Planets95(1-4), pp.361-374.

https://link.springer.com/article/10.1007/s11038-005-9025-y

Flynn, G.J. and Durda, D.D., 2004. Chemical and mineralogical size segregation in the impact disruption of inhomogeneous, anhydrous meteorites. Planetary and Space Science52(12), pp.1129-1140.

https://www.sciencedirect.com/science/article/abs/pii/S0032063304000984

Flynn, G.J., Keller, L.P., Jacobsen, C. and Wirick, S., 2004. An assessment of the amount and types of organic matter contributed to the Earth by interplanetary dust. Advances in Space Research33(1), pp.57-66.

https://www.sciencedirect.com/science/article/pii/S0273117703008548

Glavin, D.P., Matrajt, G. and Bada, J.L., 2004. Re-examination of amino acids in Antarctic micrometeorites. Advances in Space Research33(1), pp.106-113.

https://www.sciencedirect.com/science/article/pii/S0273117703010433

Graham, G.A., Kearsley, A.T., Drolshagen, G., McDonnell, J.A.M., Wright, I.P. and Grady, M.M., 2004. Mineralogy and microanalysis in the determination of cause of impact damage to spacecraft surfaces. Geological Society, London, Special Publications232(1), pp.137-146.

https://sp.lyellcollection.org/content/232/1/137.short

Griffin, D.W., 2004. Terrestrial microorganisms at an altitude of 20,000 m in Earth's atmosphere. Aerobiologia20(2), pp.135-140.

https://link.springer.com/article/10.1023/B:AERO.0000032948.84077.12

Hanner, M.S. and Bradley, J.P., 2004. Composition and mineralogy of cometary dust. Comets II555, p.564.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.534.5870&rep=rep1&type=pdf

Keller, L.P., Messenger, S., Flynn, G.J., Clemett, S., Wirick, S. and Jacobsen, C., 2004. The nature of molecular cloud material in interplanetary dust. Geochimica et Cosmochimica Acta68(11), pp.2577-2589.

https://www.sciencedirect.com/science/article/abs/pii/S0016703703008950

Kocifaj, M., 2004. Interstellar dust extinction problem: benchmark of (semi) analytic approaches and regularization method. Contributions of the Astronomical Observatory Skalnaté Pleso34, pp.141-156.

http://adsabs.harvard.edu/full/2004CoSka..34..141K

Rietmeijer, F.J. and Nuth, J.A., 2004. Grain sizes of ejected comet dust. Condensed Dust Analogs, Interplanetary Dust Particles and Meteors. In The New Rosetta Targets (pp. 97-110). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-1-4020-2573-0_11

Schroer, C.G., Gunzler, T.F., Kuhlmann, M., Kurapova, O., Feste, S., Schweitzer, M., Lengeler, B., Schroder, W.H., Drakopoulos, M., Somogyi, A. and Simionovici, A.S., 2004, October. Fluorescence microtomography using nanofocusing refractive x-ray lenses. In Developments in X-Ray Tomography IV (Vol. 5535, pp. 162-168). International Society for Optics and Photonics.

https://www.spiedigitallibrary.org/conference-proceedings-of-spie/5535/0000/Fluorescence-microtomography-using-nanofocusing-refractive-x-ray-lenses/10.1117/12.559679.short?SSO=1

WRIGHT, I. and GRADY, M., 2004. GA GRAHAM14\AT KEARSLEY2", G. DROLSHAGENl, JAM McDONNELL1. Forensic Geoscience: Principles, Techniques and Applications, (232), p.137.

https://books.google.com/books?hl=en&lr=&id=18W2Tmk3QnMC&oi=fnd&pg=PA137&dq=cosmic+dust+stratosphere&ots=yZ3Nf4co1-&sig=lG9q23rQdf7oUfCpmLm5sCtiYV0#v=onepage&q=cosmic%20dust%20stratosphere&f=false

2003

Bradley, J.P., 2003. Interplanetary dust particles. Treatise on geochemistry1, p.711.

https://ui.adsabs.harvard.edu/abs/2003TrGeo...1..689B/abstract

Flynn, S.G., 2003. ORGANIC ANALYSES OF PARTICLES FROM THE STRATOSPHERIC COLLECTION COINCIDING WITH THE EARTH'S 2003 PASSAGE THROUGH THE DUST TRAIL OF COMET 20P/GRIGG. Geochim. Cosmochim. Acta67, pp.4791-4806.

https://www.lpi.usra.edu/meetings/lpsc2011/pdf/1856.pdf

Flynn, G., CHEMICAL AND MINERALOGICAL ANALYSIS OF AN EXTRATERRESTRIAL PARTICLE IN.

https://www.lpi.usra.edu/meetings/lpsc2003/pdf/1814.pdf

Flynn, G.J., Keller, L.P., Feser, M., Wirick, S. and Jacobsen, C., 2003. The origin of organic matter in the solar system: Evidence from the interplanetary dust particles. Geochimica et Cosmochimica Acta67(24), pp.4791-4806.

https://www.sciencedirect.com/science/article/abs/pii/S001670370300629X

Flynn, G.J., Keller, L.P., Wirick, S., Jacobsen, C. and Sutton, S.R., 2003, March. Analysis of interplanetary dust particles by soft and hard X-ray microscopy. In Journal de Physique IV (Proceedings) (Vol. 104, pp. 367-372). EDP sciences.

https://jp4.journaldephysique.org/articles/jp4/abs/2003/02/jp4pr2p367/jp4pr2p367.html

Hanner, M.S., 2003. The Mineralogy of cometary dust. In Astromineralogy (pp. 171-188). Springer, Berlin, Heidelberg.

https://link.springer.com/chapter/10.1007/3-540-45840-9_4

Lal, D. and Jull, A.T., 2003. Extra-terrestrial influx rates of cosmogenic isotopes and platinum group elements: realizable geochemical effects. Geochimica et Cosmochimica Acta67(24), pp.4925-4933.

https://www.sciencedirect.com/science/article/abs/pii/S0016703703005027

Mateshvili, N. and Rietmeijer, F.J., 2003. Stratospheric dust loading from early 1981 to September 1985 based on the twilight sounding method and stratospheric dust collections. Journal of volcanology and geothermal research120(1-2), pp.55-69.

https://www.sciencedirect.com/science/article/abs/pii/S0377027302003608

Messenger, S.R., 2003. Workshop on Cometary Dust in Astrophysics.

https://ntrs.nasa.gov/search.jsp?R=20030073556

Messenger, S., Stadermann, F.J., Floss, C., Nittler, L.R. and Mukhopadhyay, S., 2003. Isotopic signatures of presolar materials in interplanetary dust. In Solar System History from Isotopic Signatures of Volatile Elements (pp. 155-172). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-010-0145-8_11

Messenger, S., Keller, L.P., Stadermann, F.J., Walker, R.M. and Zinner, E., 2003. Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science300(5616), pp.105-108.

https://science.sciencemag.org/content/300/5616/105

Taylor, G.J., 2003. A New Type of Stardust. Planetary Science Research Discoveries Report.

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.693.2574&rep=rep1&type=pdf

2002

Borg, J., 2002. Extraterrestrial samples from low Earth orbits: techniques for their collection and analysis. Planetary and Space Science50(9), pp.889-894.

https://www.sciencedirect.com/science/article/abs/pii/S0032063302000648

Dermott, S.F., Durda, D.D., Grogan, K. and Kehoe, T.J.J., 2002. Asteroidal dust. Asteroids III, pp.423-442.

https://books.google.com/books?hl=en&lr=&id=JwHTyO6IHh8C&oi=fnd&pg=PA423&dq=cosmic+dust+stratosphere&ots=AKa2OkuT6K&sig=WJpk55HErroJQhxRuajXx2QO8zs#v=onepage&q=cosmic%20dust%20stratosphere&f=false

Flynn, G.J., 2002. Extraterrestrial dust in the near-Earth environment. Meteors in the Earth's Atmosphere. Cambridge University Press, Cambridge, pp.77-94.

https://link.springer.com/chapter/10.1007/978-94-010-0628-6_2

Flynn, G.J. and Keller, L.P., 2002. Synchrotron FTIR Examination of Interplanetary Dust Particles: An Effort to Determine the Compounds and Minerals in Interstellar and Circumstellar Dust.

https://ntrs.nasa.gov/search.jsp?R=20030058889

Graham, G.A., Kearsley, A.T., Burchell, M.J., Creighton, A. and Wright, I.P., 2002. Microanalysis of cosmic dust-Prospects and challenges. Dust in the Solar System and Other Planetary Systems15, pp.400-404.

https://books.google.com/books?hl=en&lr=&id=1Ntqv8RCAwEC&oi=fnd&pg=PA400&dq=cosmic+dust+stratosphere&ots=h-t4g8QU1t&sig=WI1N4_TwdJvGyx7YULmge04aUqo#v=onepage&q=cosmic%20dust%20stratosphere&f=false

JM, F. and MEIJER, R., 2002. PARTICLES, MICROMETEORITES, METEORITES, AND METEORIC DUST. Meteors in the Earth's Atmosphere: Meteoroids and Cosmic Dust and Their Interactions with the Earth's Upper Atmosphere, p.215.

https://books.google.com/books?hl=en&lr=&id=eqd4e34uE-MC&oi=fnd&pg=PA215&dq=cosmic+dust+stratosphere&ots=7tlkoLM4KU&sig=aiNLnI7XIDxdmJfNhbiKOrlxyTY#v=onepage&q=cosmic%20dust%20stratosphere&f=false

Kehm, K., Flynn, G.J., Sutton, S.R. and Hohenberg, C.M., 2002. Combined noble gas and trace element measurements on individual stratospheric interplanetary dust particles. Meteoritics & Planetary Science37(10), pp.1323-1335.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2002.tb01031.x

Lal, D. and Jull, A.T., 2002. Atmospheric cosmic dust fluxes in the size range 10–4 to 10 centimeters. The Astrophysical Journal576(2), p.1090.

https://iopscience.iop.org/article/10.1086/341797/meta

Messenger, S., 2002. Deuterium enrichments in interplanetary dust. Planetary and Space Science50(12-13), pp.1221-1225.

https://www.sciencedirect.com/science/article/abs/pii/S0032063302000867

Messenger, S., 2002. Opportunities for the stratospheric collection of dust from short‐period comets. Meteoritics & Planetary Science37(11), pp.1491-1505.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2002.tb00806.x

Nakamura, K., Zolensky, M.E., Tomita, S., Nakashima, S. and Tomeoka, K., 2002. Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions. International Journal of Astrobiology1(3), pp.179-189.

https://www.cambridge.org/core/journals/international-journal-of-astrobiology/article/hollow-organic-globules-in-the-tagish-lake-meteorite-as-possible-products-of-primitive-organic-reactions/236EC7907ADD5AA10DC49F28452C3051

Pfeffer, A., Chizmadia, L., Macy, B., Fischer, T.P., Zolensky, M.E., Warren, J.L. and Jenniskens, P., LEONID DUST SPHERES CAPTURED DURING THE 2002 STORM? Frans JM Rietmeijer1, Melissa. Earth, Moon, Planets82(83), pp.505-524.

https://pdfs.semanticscholar.org/a168/5d50de182d8b4ad02271097aeffa6a0c1638.pdf

Rietmeijer, F.J., 2002. The earliest chemical dust evolution in the solar nebula. Geochemistry62(1), pp.1-45.

https://www.sciencedirect.com/science/article/pii/S000928190470001X

Rotundi, A., Brucato, J.R., Colangeli, L., Ferrini, G., Mennella, V., Palomba, E. and Palumbo, P., 2002. Production, processing and characterization techniques for cosmic dust analogues. Meteoritics & Planetary Science37(11), pp.1623-1635.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2002.tb00816.x

Wallis, M.K., Al-Mufti, S., Wickramasinghe, N.C., Rajaratnam, P. and Narlikar, J.V., 2002. SEM Imaging of Stratospheric Particles of Non-terrestrial Origin. Presentation at University of the West of England, Bristol.

https://www.researchgate.net/profile/Max_Wallis/publication/265272841_SEM_Imaging_of_Stratospheric_Particles_of_Non-terrestrial_Origin/links/54a64cf00cf267bdb9083132/SEM-Imaging-of-Stratospheric-Particles-of-Non-terrestrial-Origin.pdf

2001

Aleon, J., 2001. Development of the isotopic analysis of individual macroparticles: a study of desert dust and interplanetary dust.

https://inis.iaea.org/search/search.aspx?orig_q=RN:48078436

Brownlee, D.E., 2001. The origin and properties of dust impacting the Earth. In Accretion of extraterrestrial matter throughout Earth's history (pp. 1-12). Springer, Boston, MA.

https://link.springer.com/chapter/10.1007/978-1-4419-8694-8_1

Jessberger, E.K., Stephan, T., Rost, D., Arndt, P., Maetz, M., Stadermann, F.J., Brownlee, D.E., Bradley, J.P. and Kurat, G., 2001. Properties of interplanetary dust: Information from collected samples. In Interplanetary dust (pp. 253-294). Springer, Berlin, Heidelberg.

https://link.springer.com/chapter/10.1007/978-3-642-56428-4_6

Kapisinsky, I., Figusch, V., Ivan, J., Izdinsky, K. and Zemánková, M., 2001. Reanalysis of porous chondritic cosmic dust particles. Contributions of the Astronomical Observatory Skalnate Pleso31, pp.79-89.

http://adsabs.harvard.edu/full/2001CoSka..31...79K

Klačka, J. and Kocifaj, M., 2001. Motion of nonspherical dust particle under the action of electromagnetic radiation. Journal of Quantitative Spectroscopy and Radiative Transfer70(4-6), pp.595-610.

https://www.sciencedirect.com/science/article/abs/pii/S0022407301000322

Pepin, R.O., Palma, R.L. and Schlutter, D.J., 2001. Noble gases in interplanetary dust particles, II: Excess helium‐3 in cluster particles and modeling constraints on interplanetary dust particle exposures to cosmic‐ray irradiation. Meteoritics & Planetary Science36(11), pp.1515-1534.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2001.tb01843.x

Rietmeijer, F.J., 2001. Identification of Fe-rich meteoric dust. Planetary and Space Science49(1), pp.71-77.

https://www.sciencedirect.com/science/article/abs/pii/S0032063300000945

2000

Rost, D., 2000. TOF-SIMS analyses of interplanetary dust particles (Doctoral dissertation).

https://archiv.ub.uni-heidelberg.de/volltextserver/1073/

Flynn, G.J., Sutton, S.R. and Lanzirotti, A., 2000. A comparison of the selenium contents of sulfides from interplanetary dust particles and meteorites. Meteoritics and Planetary Science Supplement35, p.A54.

http://adsabs.harvard.edu/full/2000M%26PSA..35Q..54F

Folco, L. and Franchi, I.A., 2000. Dar al Gani 670 shergottite: a new fragment of the Dar al Gani 476/489 Martian meteorite. Meteoritics and Planetary Science Supplement35, p.A54.

http://adsabs.harvard.edu/full/2000M%26PSA..35R..54F

Graham, G.A., Kearsley, A.T., Grady, M.M., Wright, I.P. and McDonnell, J.A.M., 2000. The collection of micrometeoroid remnants from low Earth orbit. Advances in Space Research25(2), pp.303-307.

https://www.sciencedirect.com/science/article/pii/S0273117799009485

Messenger, S., 2000. Identification of molecular-cloud material in interplanetary dust particles. Nature404(6781), pp.968-971.

https://www.nature.com/articles/35010053

Pepin, R.O., Palma, R.L. and Schlutter, D.J., 2000. Noble gases in interplanetary dust particles, I: The excess helium‐3 problem and estimates of the relative fluxes of solar wind and solar energetic particles in interplanetary space. Meteoritics & Planetary Science35(3), pp.495-504.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2000.tb01431.x

Raynal, P.I., Quirico, E., Borg, J., Deboffle, D., Dumas, P., d'Hendecourt, L., Bibring, J.P. and Langevin, Y., 2000. Synchrotron infrared microscopy of micron-sized extraterrestrial grains. Planetary and Space Science48(12-14), pp.1329-1339.

https://www.sciencedirect.com/science/article/abs/pii/S0032063300001136

Rietmeijer, F.J., 2000. Interrelationships among meteoric metals, meteors, interplanetary dust, micrometeorites, and meteorites. Meteoritics & Planetary Science35(5), pp.1025-1041.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2000.tb01490.x

Rietmeijer, F.J., 2000. Shower meteoroids: Constraints from interplanetary dust particles and Leonid meteors. Earth, Moon, and Planets88(1), pp.35-58.

https://link.springer.com/article/10.1023/A:1013862627781

Rietmeijer, F.J., Nuth III, J.A., Jablonska, M. and Karner, J.M., 2000. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities.

https://ntrs.nasa.gov/search.jsp?R=20000032750

Stansbery, E.K. and Latner, A.G., 2000. The Stuff of Other Worlds.

https://ntrs.nasa.gov/search.jsp?R=20100033321

Taylor, G.J., 2000. Analyzing Next to Nothing. Planetary Science Research Discoveries Report.

https://www.higp.hawaii.edu/psrd/April00/PSRD-analyzingSmall.pdf

Zolensky, M.E., Pieters, C., Clark, B. and Papike, J.J., 2000. Small is beautiful: The analysis of nanogram‐sized astromaterials. Meteoritics & Planetary Science35(1), pp.9-29.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.2000.tb01970.x

1999

Bradley, J.P., 1999. Interstellar Dust—Evidence from Interplanetar Dust Particles. In Formation and Evolution of Solids in Space (pp. 485-503). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-011-4806-1_28

Bradley, J.P., Keller, L.P., Snow, T.P., Hanner, M.S., Flynn, G.J., Gezo, J.C., Clemett, S.J., Brownlee, D.E. and Bowey, J.E., 1999. An infrared spectral match between GEMS and interstellar grains. Science285(5434), pp.1716-1718.

https://science.sciencemag.org/content/285/5434/1716

Durda, D.D. and Flynn, G.J., 1999. Experimental study of the impact disruption of a porous, inhomogeneous target. Icarus142(1), pp.46-55.

https://www.sciencedirect.com/science/article/abs/pii/S0019103599962036

Flynn, G., 1999, January. Interplanetary dust, micrometeorites, and meteorites-Chemistry, mineralogy and atmospheric interactions of meteors. In 37th Aerospace Sciences Meeting and Exhibit (p. 500).

https://arc.aiaa.org/doi/abs/10.2514/6.1999-500

Graham, G.A., Kearsley, A.T., Hough, R.M., Wright, I.P., Drolshagen, G. and Grady, M.M., 1999. Interstellar silicon carbide captured in low Earth orbit. Meteoritics and Planetary Science Supplement34, p.A47.

http://adsabs.harvard.edu/full/1999M%26PSA..34R..47G

Jessberger, E.K., 1999. Rocky cometary particulates: Their elemental, isotopic and mineralogical ingredients. In Composition and Origin of Cometary Materials (pp. 91-97). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-011-4211-3_9

Kocifaj, M., Kapiŝinský, I. and Kundracik, F., 1999. Optical effects of irregular cosmic dust particle U2015 B10. Journal of Quantitative Spectroscopy and Radiative Transfer63(1), pp.1-14.

https://www.sciencedirect.com/science/article/abs/pii/S0022407398001307

Llorca, J., 1999. Hydrocarbon synthesis in cometary grains. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science24(5), pp.591-595.

https://www.sciencedirect.com/science/article/abs/pii/S1464191799000975

Mateshvili, N., Mateshvili, G., Mateshvili, I., Gheondjian, L. and Avsajanishvili, O., 1999. Vertical distribution of dust particles in the Earth's atmosphere during the 1998 Leonids. Meteoritics & Planetary Science34(6), pp.969-973.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1999.tb01415.x

Noever, D.A., Phillips, J.A., Horack, J.M., Jerman, G. and Myszka, E., 1999. An et origin for stratospheric particles collected during the 1998 leonids meteor shower. arXiv preprint astro-ph/9910391.

https://arxiv.org/abs/astro-ph/9910391

Rietmeijer, F., 1999. Interplanetary dust particles, micrometeorites, mesospheric metals, and meteoric dust. In 37th Aerospace Sciences Meeting and Exhibit (p. 502).

https://arc.aiaa.org/doi/abs/10.2514/6.1999-502

Rietmeijer, F.J., 1999. Metastable non-stoichiometric diopside and Mg-wollastonite; an occurrence in an interplanetary dust particle. American Mineralogist84(11-12), pp.1883-1894.

https://pubs.geoscienceworld.org/msa/ammin/article-abstract/84/11-12/1883/43611

Rietmeijer, F.J.M. and Flynn, G.J., 2000. A Cosmic Iron/Nickel Signature Associated with Dust Between 34 and 35 km Altitude During May 1985. Meteoritics and Planetary Science Supplement35, p.A136.

http://adsabs.harvard.edu/full/2000M%26PSA..35R.136R

1998

Greshake, A., Kloeck, W., Arndt, P., Maetz, M., Flynn, G.J., Bajt, S. and Bischoff, A., 1998. Heating experiments simulating atmospheric entry heating of micrometeorites: Clues to their parent body sources. Meteoritics & Planetary Science33(2), pp.267-290.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1998.tb01632.x

Kehm, K., Flynn, G.J., Sutton, S.R. and Hohenberg, C.M., 1998. Helium, neon, and argon measured in large stratospheric dust particles. Meteoritics and Planetary Science Supplement33, p.A82.

http://adsabs.harvard.edu/full/1998M%26PSA..33R..82K

Llorca, J. and Casanova, I., 1998. Formation of carbides and hydrocarbons in chondritic interplanetary dust particles: A laboratory study. Meteoritics & Planetary Science33(2), pp.243-251.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1998.tb01629.x

Keller, L.P., 1998. Planar Defects in Matrix Olivines from the Oxidized Subgroup of the CV3 Carbonaceous Chondrites: A Group Characteristic. Meteoritics and Planetary Science Supplement33, p.A82.

http://adsabs.harvard.edu/full/1998M%26PSA..33Q..82K

Rietmeijer, F.J. and Jenniskens, P., 1998. Recognizing Leonid meteoroids among the collected stratospheric dust. Earth, Moon, and Planets82, pp.505-524.

https://link.springer.com/article/10.1023/A:1017008600309

Rietmeijer, F.J. and Nuth, J.A., 1998. Collected extraterrestrial materials: Constraints on meteor and fireball compositions. Earth, Moon, and Planets82, pp.325-350.

https://link.springer.com/article/10.1023/A:1017086517630

Rost, D., Stephan, T. and Jessberger, E.K., 1999. Surface analysis of stratospheric dust particles. Meteoritics & Planetary Science34(4), pp.637-646.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1999.tb01369.x

1997

Bradley, J.P., Brownlee, D.E. and Snow, T.P., 1997. GEMS and other pre-accretionally irradiated grains in interplanetary dust particles. In From stardust to planetesimals (Vol. 122, p. 217).

http://adsabs.harvard.edu/full/1997ASPC..122..217B

Brownlee, D.E., Bates, B. and Schramm, L., 1997. The Leonard Award address presented 1996 July 25, Berlin, Germany: The elemental composition of stony cosmic spherules. Meteoritics & Planetary Science32(2), pp.157-175.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1997.tb01257.x

Flynn, G.J., 1997, March. Atmospheric entry survival and the possibility of stratospheric collection of modern interstellar dust. In Lunar and Planetary Science Conference (Vol. 28, p. 361).

http://adsabs.harvard.edu/full/1997LPI....28..361F

Flynn, G.J., 1997. Collecting interstellar dust grains. Nature, 387(6630), pp.248-248.

https://www.nature.com/articles/387248a0.pdf?origin=ppub

Flynn, G.J. and Sutton, S.R., 1997, March. The chemical composition of cluster IDPs using the XRF-Microprobe. In Lunar and Planetary Science Conference (Vol. 28, p. 363).

http://adsabs.harvard.edu/full/1997LPI....28..363F

Corrigan, C.M., Zolensky, M.E., Dahl, J., Long, M., Weir, J., Sapp, C. and Burkett, P.J., 1997. The porosity and permeability of chondritic meteorites and interplanetary dust particles. Meteoritics & Planetary Science32(4), pp.509-515.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1997.tb01296.x

Rietmeijer, F.J., 1997, March. A decade of NASA/JSC stratospheric dust collection-Nonspherical chondritic interplanetary dust particles. In Lunar and Planetary Science Conference (Vol. 28, p. 167).

https://ui.adsabs.harvard.edu/abs/1997jsc..rept.....W/abstract

Rietmeijer, F.J.M., 1997. Cluster Particles: A Unique New Class of Asteroid Debris or a Note of Caution?. Meteoritics and Planetary Science Supplement32.

http://adsabs.harvard.edu/full/1997M%26PSA..32Q.108R

Rietmeijer, F.J., 1997, March. First-order properties of chondritic cluster IDPs based on data from the NASA/JSC Cosmic Dust Catalogs. In Lunar and Planetary Science Conference (Vol. 28, p. 169).

http://adsabs.harvard.edu/full/1997LPI....28.1169R

Rietmeijer, F.J., 1997, March. Not all cluster particles in the NASA/JSC cosmic dust collection are extraterrestrial. In Lunar and Planetary Science Conference (Vol. 28, p. 171).

http://adsabs.harvard.edu/full/1997LPI....28.1171R

Rietmeijer, F.J. and Mackinnon, I.D., 1997. Bismuth oxide nanoparticles in the stratosphere. Journal of Geophysical Research: Planets102(E3), pp.6621-6627.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JE03989

Righter, K. and Delaney, J.S., 1997. Mineralogy of lodranite Queen Alexander Range 93148: redox equilibria and exsolution lamellae. Meteoritics and Planetary Science Supplement32.

http://adsabs.harvard.edu/full/1997M%26PSA..32R.108R

Warren, J., Watts, L., Thomas-Keprta, K., Wentworth, S., Dodson, A. and Zolensky, M.E., 1997. Cosmic dust catalog. Technical Report, NASA/CR-97-112971; JSC-27897; NAS 1.26: 112971.

http://adsabs.harvard.edu/full/1997LPI....28.1167R

Yamaguchi, A., Taylor, G.J., Keil, K. and Bogard, D.D., 1997. Evidence for a large cratering event on the HED parent body (Vesta)~ 4.5 GA ago. Meteoritics and Planetary Science Supplement32.

http://adsabs.harvard.edu/full/1997M%26PSA..32R.144Y

Zolensky, M.E., Brown, P., Tagliaferri, E., Spalding, R. and Space, J., 1997, March. Coordinating satellite bolide detection in the visible and infrared with collection of dust in the stratosphere. In Lunar and Planetary Science Conference (Vol. 28, p. 631).

https://www.lpi.usra.edu/meetings/lpsc97/pdf/1709.pdf

1996

Brownlee, D.E., 1996. The elemental composition of interplanetary dust. In International Astronomical Union Colloquium (Vol. 150, pp. 261-264). Cambridge University Press.

https://www.cambridge.org/core/journals/international-astronomical-union-colloquium/article/elemental-composition-of-interplanetary-dust/6EF830BA2A86E61E6712574D7F6D7586

Falvella, M.C., 1996, January. A stratospheric balloon observing facility: Milo Base. In AIP Conference Proceedings (Vol. 348, No. 1, pp. 325-328). American Institute of Physics.

https://aip.scitation.org/doi/abs/10.1063/1.49242

Flynn, G., 1996. Trace Element Abundance Measurements on Cosmic Dust Particles.

https://ntrs.nasa.gov/search.jsp?R=19980003827

Flynn, G.J., Sutton, S.R. and Bajt, S., 1996. Chemical Compositions of Cluster IDPs By XRF Microprobe. Meteoritics and Planetary Science Supplement31.

http://adsabs.harvard.edu/full/1996M%26PSA..31Q..45F

Greshake, A., Bischoff, A. and Hoppe, P., 1996. Mineralogy, chemistry, and oxygen isotopes of refractory inclusions from stratospheric interplanetary dust particles and micrometeorites. Meteoritics & Planetary Science31(6), pp.739-748.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1996.tb02109.x

Greshake, A., Klöck, W., Arndt, P., Maetz, M. and Bischoff, A., 1996. Pulse-heating of fragments from Orgueil (CI): Simulation of atmospheric entry heating of micrometeorites. In The Cosmic Dust Connection (pp. 303-311). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-011-5652-3_23

Kapiŝinský, I., Figusch, V., Hajduk, A., Ivan, J. and Iždinský, K., 1996. Determination of origin of NASA stratospheric particles. Earth, Moon, and Planets73(1), pp.7-14.

https://link.springer.com/article/10.1007/BF00058041

Rietmeijer, F.J., 1996. Cellular precipitates of iron oxide in olivine in a stratospheric interplanetary dust particle. Mineralogical Magazine60(403), pp.877-885.

https://www.cambridge.org/core/journals/mineralogical-magazine/article/cellular-precipitates-of-iron-oxide-in-olivine-in-a-stratospheric-interplanetary-dust-particle/67CABD778173FCD54096E9F4E4239C2D

Rietmeijer, F.J., 1996. CM‐like interplanetary dust particles in lower stratosphere during 1989 October and 1991 June/July. Meteoritics & Planetary Science31(2), pp.278-288.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1996.tb02024.x

Rietmeijer, F.J., 1996. The ultrafine mineralogy of a molten interplanetary dust particle as an example of the quench regime of atmospheric entry heating. Meteoritics & Planetary Science31(2), pp.237-242.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1996.tb02018.x

Rietmeijer, F.J. and Mackinnon, I.D., 1997. COMETARY EVOLUTION: CLUES ON PHYSICAL PROPERTIES FROM CHONDRITIC INTERPLANETARY DUST PARTICLES.('. In Analysis of Returned Comet Nucleus Samples: Proceedings of a Workshop Held at Milpitas, California, January 16-18, 1989 (Vol. 10152, p. 247). National Aeronautics and Space Administration, Ames Research Center.

https://books.google.com/books?hl=en&lr=&id=f8MhAQAAIAAJ&oi=fnd&pg=PA249&dq=cosmic+dust+particles+stratosphere&ots=3ztbQR_aOU&sig=nqIBtb1V6CKGJXSdcyJcC6IGjGk#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Rost, D., Stephan, T. and Jessberger, E.K., 1996. Surface analysis of stratospheric dust particles with TOF-SIMS: new results. Meteoritics and Planetary Science Supplement31.

http://adsabs.harvard.edu/full/1996M%26PSA..31R.118R

1995

Bohsung, J., Arndt, P. and Jessberger, E.K., 1995. Comment on “The bromine content of micrometeorites: Arguments for stratospheric contaminationâ€� by FJM Rietmeijer. Journal of Geophysical Research: Planets100(E4), pp.7549-7550.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JE02919

Flynn, G.J., Bajt, S., Sutton, S.R. and Klock, W., 1995. Large Stratospheric IDPs: Chemical Compostion and Comparison with Smaller Stratospheric IDPs. Meteoritics30.

http://adsabs.harvard.edu/full/1995Metic..30..505F

Flynn, G.J., Bajt, S., Sutton, S.R. and Klöck, W., 1995, March. Chemical composition of large stratospheric dust particles: Comparison with stratospheric IDPs, cluster fragments, and polar micrometeorites. In Lunar and Planetary Science Conference (Vol. 26).

http://adsabs.harvard.edu/full/1995LPI....26..407F

Goodman, A.A. and Whittet, D.C.B., 1995. A point in favor of the superparamagnetic grain hypothesis. The Astrophysical Journal Letters455(2), p.L181.

https://iopscience.iop.org/article/10.1086/309840

Kapiŝinský, I., Figusch, V., Hajduk, A., Ivan, J. and Iždinský, K., 1995. The analysis of four cosmic dust particles. Earth, Moon, and Planets68(1-3), pp.347-360.

https://link.springer.com/article/10.1007/BF00671526

Kocifaj, M. and Kapisinsky, I., 1997. Optical effects of dust particles of different shapes. Contributions of the Astronomical Observatory Skalnate Pleso27, pp.5-14.

http://adsabs.harvard.edu/full/1997CoSka..27....5K

PRABURAMI, G. and Goree, J., 1995. COSMIC DUST SYNTHESIS BY ACCRETION AND COAGULATION. COSMIC DUST441, p.83OP.

https://www.researchgate.net/profile/John_Goree/publication/23824309_Cosmic_dust_synthesis_by_accretion_and_coagulation/links/0c960519bc787a683b000000.pdf

Rietmeijer, F.J., 1995. Post‐entry and volcanic contaminant abundances of zinc, copper, selenium, germanium and gallium in stratospheric micrometeorites. Meteoritics30(1), pp.33-41.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1995.tb01209.x

Rietmeijer, F.J., 1995. Reply [to “Comment on 'The bromine content of micrometeorites: Arguments for stratospheric contamination'by FJM Rietmeijer“]. Journal of Geophysical Research: Planets100(E4), pp.7551-7552.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JE02920

Strait, M.M., Thomas, K.L. and McKay, D.S., 1995. Porosity of an anhydrous chondritic interplanetary dust particle. Meteoritics30.

http://adsabs.harvard.edu/full/1995Metic..30R.583S

Zolensky, M.E. and Thomas, K.L., 1995. Iron and iron-nickel sulfides in chondritic interplanetary dust particles. Geochimica et Cosmochimica Acta59(22), pp.4707-4712.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1994.tb00774.x

1994

Bradley, J.P., 1994. Nanometer-scale mineralogy and petrography of fine-grained aggregates in anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta58(9), pp.2123-2134.

https://www.sciencedirect.com/science/article/abs/pii/0016703794902909

Bohsung, J., Arndt, P. and Jessberger, E.K., 1994, March. Bromine in interplanetary dust particles. In Lunar and Planetary Science Conference (Vol. 25, p. 139).

http://adsabs.harvard.edu/full/1994LPI....25..139B

Bradley, J., 1994, July. Mechanisms of grain formation, post‐accretional alteration, and likely parent body environments of interplanetary dust particles (IDPS). In AIP Conference Proceedings (Vol. 310, No. 1, pp. 89-104). American Institute of Physics.

https://aip.scitation.org/doi/abs/10.1063/1.46525

Flynn, G.J., 1994, July. Changes to the composition and mineralogy of interplanetary dust particles by terrestrial encounters. In AIP Conference Proceedings (Vol. 310, No. 1, pp. 127-144). American Institute of Physics.

https://aip.scitation.org/doi/abs/10.1063/1.46529

Flynn, G.J., 1994. Changes in IDP mineralogy and composition by terrestrial factors. In Analysis of Interplanetary Dust Particles.

http://adsabs.harvard.edu/full/1994aidp.work...19F

Flynn, G.J., 1994, March. Does the Kuiper Belt contribute significantly to the zodiacal cloud and the stratospheric interplanetary dust?. In Lunar and Planetary Science Conference (Vol. 25, p. 379).

http://adsabs.harvard.edu/full/1994LPI....25..379F

Flynn, G.J., 1994. Interplanetary dust particles collected from the stratosphere: Physical, chemical, and mineralogical properties and implications for their sources. Planetary and Space Science42(12), pp.1151-1161.

https://www.sciencedirect.com/science/article/abs/pii/0032063394900140

Higashi, A. and Fujii, Y., 1994. Studies on microparticles contained in medium-depth ice cores retrieved from east Dronning Maud Land, Antarctica. Annals of Glaciology20, pp.73-79.

https://www.cambridge.org/core/journals/annals-of-glaciology/article/studies-on-microparticles-contained-in-mediumdepth-ice-cores-retrieved-from-east-dronning-maud-land-antarctica/DF4D858E9140A798D40B6A658132782E

Love, S.G. and Brownlee, D.E., 1994. Peak atmospheric entry temperatures of micrometeorites. Meteoritics29(1), pp.69-70.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1994.tb00653.x

Kapiŝinský, I., Figusch, V., Hajduk, A., Ivan, J. and I&zcirc;dinský, K., 1994. Reanalysis of four NASA stratospheric particles. Earth, Moon, and Planets64(3), pp.273-280.

https://link.springer.com/article/10.1007/BF00572153

Klöck, W. and Presper, T., 1994, March. Geochemical and mineralogical constraints on the parent objects of micrometeorites. In Lunar and Planetary Science Conference (Vol. 25, p. 711).

http://adsabs.harvard.edu/full/1994LPI....25..711K

Kloeck, W. and Stadermann, F.J., 1994, July. Mineralogical and chemical relationships of interplanetary dust particles, micrometeorites, and meteorites. In AIP Conference Proceedings (Vol. 310, No. 1, pp. 51-88). American Institute of Physics.

https://aip.scitation.org/doi/abs/10.1063/1.46523

Kurat, G., Koeberl, C., Presper, T., Brandstaetter, F. and Maurette, M., 1994. Antarctic micrometeorites. In Analysis of Interplanetary Dust Particles.

http://adsabs.harvard.edu/full/1994aidp.work...34K

Kurat, G., Koeberl, C., Presper, T., Brandstätter, F. and Maurette, M., 1994. Petrology and geochemistry of Antarctic micrometeorites. Geochimica et Cosmochimica Acta58(18), pp.3879-3904.

https://www.sciencedirect.com/science/article/abs/pii/0016703794903697

Love, S.G., Joswiak, D.J. and Brownlee, D.E., 1994. Densities of stratospheric micrometeorites. Icarus111(1), pp.227-236.

https://www.sciencedirect.com/science/article/abs/pii/S0019103584711420

Rietmeijer, F.J., 1994. A proposition for the classification of carbonaceous chondritic micrometeorites. In Analysis of Interplanetary Dust Particles.

http://adsabs.harvard.edu/full/1994aidp.work...44R

Rietmeijer, F.J. and Warren, J.L., 1994, July. Windows of opportunity in the NASA Johnson Space Center cosmic dust collection. In AIP Conference Proceedings (Vol. 310, No. 1, pp. 255-276). American Institute of Physics.

https://aip.scitation.org/doi/abs/10.1063/1.46515

Sandford, S.A. and Morrison, D., 1994. What Can Interplanetary Dust Particles Tell Us About Interstellar Dust?.

https://ntrs.nasa.gov/search.jsp?R=20010048689

Stephan, T., Jessberger, E.K., Klöck, W., Rulle, H. and Zehnpfenning, J., 1994. TOF-SIMS analysis of interplanetary dust. Earth and Planetary Science Letters128(3-4), pp.453-467.

https://www.sciencedirect.com/science/article/abs/pii/0012821X94901627

Sutton, S.R., 1994, July. Chemical compositions of primitive solar system particles. In AIP Conference Proceedings (Vol. 310, No. 1, pp. 145-158). American Institute of Physics.

https://aip.scitation.org/doi/abs/10.1063/1.46535

Thomas, K.L., Blanford, G.E., Clemett, S.J., Flynn, G.J., Keller, L.P., Klöck, W., Maechling, C.R., Mc Kay, D.S., Messenger, S., Nier, A.O. and Schlutter, D.J., 1995. An asteroidal breccia: The anatomy of a cluster IDP. Geochimica et Cosmochimica Acta59(13), pp.2797-2815.

https://www.sciencedirect.com/science/article/abs/pii/001670379500174X

Warren, J.L. and Zolensky, M.E., 1994, July. Collection and curation of interplanetary dust particles recovered from the stratosphere by NASA. In AIP Conference Proceedings (Vol. 310, No. 1, pp. 245-254). American Institute of Physics.

https://aip.scitation.org/doi/abs/10.1063/1.46514

Yano, H., Fitzgerald, H.J. and Tanner, W.G., 1994. Chemical analysis of natural particulate impact residues on the long duration exposure facility. Planetary and Space Science42(9), pp.793-802.

https://www.sciencedirect.com/science/article/abs/pii/0032063394901236

Zolensky, M.E., 1994. Workshop on Particle Capture, Recovery and Velocity/Trajectory Measurement Technologies.

https://ntrs.nasa.gov/search.jsp?R=19950012757

Zolensky, M.E., 1994. Workshop on the Analysis of Interplanetary Dust Particles.

https://ntrs.nasa.gov/search.jsp?R=19950004531

Zolensky, M. and Barrett, R., 1994, July. Olivine and pyroxene compositions of chondritic interplanetary dust particles. In AIP Conference Proceedings (Vol. 310, No. 1, pp. 105-114). American Institute of Physics.

https://aip.scitation.org/doi/abs/10.1063/1.46526

Zolensky, M.E. and Warren, J.L., 1994. Collection and curation of interplanetary dust particles recovered from the stratosphere. In Analysis of Interplanetary Dust Particles.

http://adsabs.harvard.edu/full/1994aidp.work...56Z

1993

Allègre, C.J., Sarda, P. and Staudacher, T., 1993. Speculations about the cosmic origin of He and Ne in the interior of the Earth. Earth and Planetary Science Letters117(1-2), pp.229-233.

https://www.sciencedirect.com/science/article/abs/pii/0012821X9390129W

Amari, S., Foote, J., Swan, P., Walker, R.M., Zinner, E. and Lange, G., 1993. SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2.

https://ntrs.nasa.gov/search.jsp?R=19930020178

Bohsung, J., Jessberger, E.K. and Stephan, T., 1993. Concerted Elemental Analyses-PIXE and TOF-SIMS-of Interplanetary Dust Particles. In Asteroids, Comets, Meteors 1993 (Vol. 810, p. 38).

http://adsabs.harvard.edu/full/1993LPICo.810...38B

Borg, J., Bibring, J.P., Langevin, Y., Salvetat, P. and Vassent, B., 1993. The COMET experiment. Meteoritics28(5), pp.641-648.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1993.tb00635.x

Brownlee, D.E., Joswiak, D.J., Love, S.G., Nier, A.O., Schlutter, D.J. and Bradley, J.P., 1993. Properties of cometary and asteroidal IDPs identified by He temperature-release profiles. Meteoritics28.

https://ui.adsabs.harvard.edu/abs/1993Metic..28R.332B/abstract

Clemett, S.J., Maechling, C.R., Zare, R.N., Swan, P.D. and Walker, R.M., 1993. Identification of complex aromatic molecules in individual interplanetary dust particles. Science262(5134), pp.721-725.

https://science.sciencemag.org/content/262/5134/721

Dickinson, T., 1993. Directory of research projects: Planetary materials and geochemistry.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940011308.pdf

Flynn, G.J., Sutton, S.R. and Bajt, S., 1993, March. Trace element content of chondritic cosmic dust: Volatile enrichments, thermal alterations, and the possibility of contamination. In Lunar and Planetary Science Conference (Vol. 24).

http://adsabs.harvard.edu/full/1993LPI....24..495F

Flynn, G.J., Sutton, S.R., Bajt, S. and Kloeck, W., 1993, March. New low-Ni (igneous?) particles among the C and C? types of cosmic dust. In Lunar and Planetary Science Conference (Vol. 24).

http://adsabs.harvard.edu/full/1993LPI....24..499F

Flynn, G.J., Sutton, S.R. and Klöck, W., 1993. Compositions and mineralogies of unmelted polar micrometeorites: Similarities and differences with IDPs and meteorites. Antarctic Meteorite Research6, p.304.

http://adsabs.harvard.edu/full/1993AMR.....6..304F

Love, S.G. and Brownlee, D.E., 1993. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science262(5133), pp.550-553.

https://science.sciencemag.org/content/262/5133/550

Love, S.G., Joswiak, D.J. and Brownlee, D.E., 1993. Densities of 5-15 micron interplanetary dust particles.

https://ntrs.nasa.gov/search.jsp?R=19940011894

Presper, T., Kurat, G., Koeberl, C., Palme, H. and Maurette, M., 1993, March. Elemental depletions in Antarctic micrometeorites and Arctic cosmic spherules: Comparison and relationships. In Lunar and Planetary Science Conference (Vol. 24).

http://adsabs.harvard.edu/full/1993LPI....24.1177P

Rietmeijer, F.J., 1993. The bromine content of micrometeorites: Arguments for stratospheric contamination. Journal of Geophysical Research: Planets98(E4), pp.7409-7414.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/93GL00735

Rietmeijer, F.J., 1993. Size distributions in two porous chondritic micrometeorites. Earth and planetary science letters117(3-4), pp.609-617.

https://www.sciencedirect.com/science/article/abs/pii/0012821X9390106J

Rietmeijer, F.J., 1993. Volcanic dust in the stratosphere between 34 and 36 km altitude during May 1985. Journal of volcanology and geothermal research55(1-2), pp.69-83.

https://www.sciencedirect.com/science/article/abs/pii/037702739390090E

Stadermann, F.J., Amari, S., Foote, J., Swan, P., Walker, R.M. and Zinner, E., 1993. SIMS chemical and isotopic analysis of impact features from LDEF experiments AO187-1 and AO187-2. In NASA Conference Publication (pp. 461-461). NASA.

https://books.google.com/books?hl=en&lr=&id=745WAAAAMAAJ&oi=fnd&pg=PA461&dq=cosmic+dust+particles+stratosphere&ots=CsBVenu3sk&sig=sAVe5RxT219AKihCuPbGp2NIt3M#v=onepage&q=cosmic%20dust%20particles%20stratosphere&f=false

Thomas, K.L., Blanford, G.E., Keller, L.P., Klöck, W. and McKay, D.S., 1993. Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochimica et Cosmochimica Acta57(7), pp.1551-1566.

https://www.sciencedirect.com/science/article/abs/pii/001670379390012L

1992

Amari, S., Foote, J., Simon, C., Jessberger, E.K., Lange, G., Stadermann, F., Swan, P., Walker, R.M. and Zinner, E., 1992. SIMS chemical analysis of extended impact features from the trailing edge portion of experiment AO187-2.

https://ntrs.nasa.gov/search.jsp?R=19920014073

Blanco, A., Orofino, V., Martino, M., Fonti, S. and Stephens, J.R., 1992. Laboratory study of silicates and application to cometary dust. Il Nuovo Cimento C15(6), pp.1091-1096.

https://link.springer.com/article/10.1007/BF02506700

Bradley, J.P., Humecki, H.J. and Germani, M.S., 1992. Combined infrared and analytical electron microscope studies of interplanetary dust particles. The Astrophysical Journal394, pp.643-651.

http://adsabs.harvard.edu/full/1992ApJ...394..643B

Brooks, D.A. and Bradley, J.P., 1992. Thin-sectioning and analysis of fine-grained meteoritic materials.

https://ntrs.nasa.gov/search.jsp?R=19930002358

Brownlee, D.E. and Sandford, S.A., 1992. Cosmic dust.

https://ntrs.nasa.gov/search.jsp?R=19930009365

Bustin, R., 1992. Volatiles in interplanetary dust particles: A comparison with CI and CM chondrites.

https://ntrs.nasa.gov/search.jsp?R=19930016873

Center, J.S., Bustin, R. and Batesville, A.R., 1992. VOLATILES IN INTERPLANETARY DUST PARTICLES. Richard B. Bannerot and Stanley H. Goldstein, Editors.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930016869.pdf#page=55

Flynn, G.J. and Sutton, S.R., 1992, March. Element abundances in stratospheric cosmic dust: Indications for a new chemical type of chondritic material. In Lunar and Planetary Science Conference (Vol. 23).

http://adsabs.harvard.edu/full/1992LPI....23..373F

Flynn, G.J., Sutton, S.R., Keller, L.P., Thomas, K.L. and Bajt, S., 1992. Trace Elements in Chondritic Spheres from the Stratosphere: Implications for the Ni-Depletions in Polar Micrometeorites. Meteoritics27.

http://adsabs.harvard.edu/full/1992Metic..27Q.221F

Flynn, G.J., Sutton, S.R., Thomas, K.L., Keller, L.P. and Klöck, W., 1992, March. Zinc depletions and atmospheric entry heating in stratospheric cosmic dust particles. In Lunar and Planetary Science Conference (Vol. 23).

http://adsabs.harvard.edu/full/1992LPI....23..375F

Flynn, G.J. and Sutton, S.R., 1992. Trace elements in chondritic stratospheric particles-Zinc depletion as a possible indicator of atmospheric entry heating. In Lunar and Planetary Science Conference Proceedings (Vol. 22, pp. 171-184).

http://adsabs.harvard.edu/full/1992LPSC...22..171F

Gibson Jr, E.K., 1992. Volatiles in interplanetary dust particles: A review. Journal of Geophysical Research: Planets97(E3), pp.3865-3875.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JE00033

Gustafson, B.A., Gruen, E., Dermott, S.F. and Durda, D.D., 1992. Collisional and dynamic evolution of dust from the asteroid belt.

https://ntrs.nasa.gov/search.jsp?R=19930009976

Jessberger, E.K., Bohsung, J., Chakaveh, S. and Traxel, K., 1992. The volatile element enrichment of chondritic interplanetary dust particles. Earth and planetary science letters112(1-4), pp.91-99.

https://www.sciencedirect.com/science/article/abs/pii/0012821X9290009K

Kapisinsky, I., 1992. The statistical and astronomical view of the decennium of the NASA Cosmic Dust Program. Contributions of the Astronomical Observatory Skalnate Pleso22, pp.215-226.

http://adsabs.harvard.edu/full/1992CoSka..22..215K

Keller, L.P., Thomas, K.L. and Mckay, D.S., 1992. An interplanetary dust particle with links to CI chondrites. Geochimica et cosmochimica acta56(3), pp.1409-1412.

https://www.sciencedirect.com/science/article/abs/pii/001670379290072Q

Lindstrom, D.J., 1992, March. Scandium/Iron and Cobalt/Iron Ratios as Indicators of the Sources of Stratospheric Dust Particles. In Lunar and Planetary Science Conference (Vol. 23).

http://adsabs.harvard.edu/full/1992LPI....23..779L

Maurette, M., Brownlee, D.E., Joswiak, D.J. and Sutton, S.R., 1992, March. Antarctic micrometeorites smaller than 50 microns. In Lunar and Planetary Science Conference (Vol. 23).

http://adsabs.harvard.edu/full/1992LPI....23..857M

Mendybaev, R.A. and Lavrukhina, A.K., 1992. On the nature of the primordial matter in the solar system-Chemical and mineral compositions of the primitive types of cosmic matter. Geokh, pp.3-12.

https://ui.adsabs.harvard.edu/abs/1992Geokh........3M/abstract

Nier, A.O. and Schlutter, D.J., 1992. Extraction of helium from individual interplanetary dust particles by step‐heating. Meteoritics27(2), pp.166-173.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1992.tb00744.x

Rietmeijer, F.J.M., 1992. Bromine in interplanetary dust particles (IDPs): Evidence for stratospheric contamination. Meteoritics27.

http://adsabs.harvard.edu/full/1992Metic..27Q.280R

Rietmeijer, F.J., 1992. A detailed petrological analysis of hydrated, low-nickel, nonchondritic stratospheric dust particles. In Lunar and Planetary Science Conference Proceedings (Vol. 22, pp. 195-201).

http://adsabs.harvard.edu/full/1992LPSC...22..195R

Rietmeijer, F.J., 1992. Carbon petrology in cometary dust.

https://ntrs.nasa.gov/search.jsp?R=19930010043

Szydlik, P.P. and Flynn, G.J., 1992, March. A model for the internal temperature distribution of micrometeorites during atmospheric entry heating. In Lunar and Planetary Science Conference (Vol. 23).

http://adsabs.harvard.edu/full/1992LPI....23.1399S

Thomas, K.L., Keller, L.P., Flynn, G.J., Sutton, S.R., Takatori, K. and McKay, D.S., 1992, March. Bulk compositions, mineralogy, and trace element abundances of six interplanetary dust particles. In Lunar and Planetary Science Conference (Vol. 23).

http://adsabs.harvard.edu/full/1992LPI....23.1427T

1991

Bradley, J.P., 1991. Physical and mineralogical properties of anhydrous interplanetary dust particles in the analytical electron microscope. In Origin and evolution of interplanetary dust (pp. 63-70). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-011-3640-2_13

Bradley, J.P. and Brownlee, D.E., 1991. An interplanetary dust particle linked directly to type CM meteorites and an asteroidal origin. Science251(4993), pp.549-552.

https://science.sciencemag.org/content/251/4993/549

Brownlee, D.E., Love, S. and Schramm, L.S., 1991, March. Cosmic spherules and giant micrometeorites as samples of main belt asteroids. In Lunar and Planetary Science Conference (Vol. 22).

http://adsabs.harvard.edu/full/1991LPI....22..147B

Bustin, R., 1991. Volatiles in interplanetary dust particles.

https://ntrs.nasa.gov/search.jsp?R=19910021741

Cooke, E., Flynn, G.J. and Sutton, S.R., 1991, March. Low-Ni" Cosmic" Particles in the Stratospheric Dust Collection: an Examination of the JSC Catalog EDX Spectra. In Lunar and Planetary Science Conference (Vol. 22).

http://adsabs.harvard.edu/full/1991LPI....22..235C

Fazio, G.G., 1991. Balloons for scientific research: The international scene.

http://nopr.niscair.res.in/handle/123456789/36185

Fink, U., Combi, M. and Disanti, M.A., 1991. The P/Halley: Spatial distribution and scale lengths for C2, CN, NH2, and H2O.

https://ntrs.nasa.gov/search.jsp?R=19910016678

Flynn, G.J., 1991. Large Micrometeorites: Atmospheric Entry Survival, Relation to Main-Belt Asteroids, and Implications for the Cometary Dust Flux. In Asteroids, Comets, Meteors 1991 (Vol. 765, p. 68).

http://adsabs.harvard.edu/full/1991LPICo.765...68F

Flynn, G.J. and Sutton, S.R., 1991. Chemical characterization of seven large area collector particles by SXRF. In Lunar and Planetary Science Conference Proceedings (Vol. 21, pp. 549-556).

http://adsabs.harvard.edu/full/1990LPSC...20..357S

Flynn, G.J. and Sutton, S.R., 1991, March. Cosmic Class Stratospheric Particles: Trace Elements in C? Samples and Zn Depletions. In Lunar and Planetary Science Conference (Vol. 22).

http://adsabs.harvard.edu/full/1991LPI....22..395F

Flynn, G.J. and Sutton, S.R., 1991. Cosmic dust particle densities-Evidence for two populations of stony micrometeorites. In Lunar and Planetary Science Conference Proceedings (Vol. 21, pp. 541-547).

http://adsabs.harvard.edu/full/1991LPSC...21..541F

Gaffey, M.J., 1991. The mineralogy of S-type asteroids: Why doesn't spectroscopy find ordinary chondrites in the asteroid belt?. Meteoritics26, p.335.

http://adsabs.harvard.edu/full/1991Metic..26..335G

Gibson Jr, E.K. and Harmetz, C.P., 1991. Volatiles in interplanetary dust particles and aerogels.

https://ntrs.nasa.gov/search.jsp?R=19920004376

Gucun, W., Ziyuan, O., Yiwen, X. and Xiguang, W., 1991. A Balloon-Borne Detector for Stratospheric Cosmic Dust Detection. In Origin and Evolution of Interplanetary Dust (pp. 33-36). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007%2F978-94-011-3640-2_6

Hartmetz, C.P., Gibson Jr, E.K. and Blanford, G.E., 1991. Analysis of volatiles present in interplanetary dust and stratospheric particles collected on large area collectors. In Lunar and Planetary Science Conference Proceedings (Vol. 21, pp. 557-567).

http://adsabs.harvard.edu/full/1991LPSC...21..557H

Jackson, A.A. and Zook, H.A., 1991, March. Dust Particles from Comets and Asteroids: Parent-Daughter Relationships. In Lunar and Planetary Science Conference (Vol. 22).

http://adsabs.harvard.edu/full/1991LPI....22..629J

Jessberger, E.K. and Kissel, J., 1991. Chemical properties of cometary dust and a note on carbon isotopes. In International Astronomical Union Colloquium (Vol. 116, No. 2, pp. 1075-1092). Cambridge University Press.

https://www.cambridge.org/core/journals/international-astronomical-union-colloquium/article/chemical-properties-of-cometary-dust-and-a-note-on-carbon-isotopes/EDE50A6A951A1EE31FC389F2CD507586

Nelson, D.E., 1991. A new method for carbon isotopic analysis of protein. Science251(4993), pp.552-554.

https://science.sciencemag.org/content/251/4993/552

Nishiizumi, K., Arnold, J.R., Fink, D., Klein, J., Middleton, R., Brownlee, D.E. and Maurette, M., 1991. Exposure history of individual cosmic particles. Earth and planetary science letters104(2-4), pp.315-324.

https://www.sciencedirect.com/science/article/abs/pii/0012821X9190212Z

Plane, J.M., 1991. The chemistry of meteoric metals in the Earth's upper atmosphere. International Reviews in Physical Chemistry10(1), pp.55-106.

https://www.tandfonline.com/doi/abs/10.1080/01442359109353254

Rietmeijer, F.J., 1991. Aqueous alteration in five chondritic porous interplanetary dust particles. Earth and Planetary Science Letters102(2), pp.148-157.

https://www.sciencedirect.com/science/article/abs/pii/0012821X91900042

Sandford, S.A., 1991. Constraints on the parent bodies of collected interplanetary dust particles. In Origin and evolution of interplanetary dust (pp. 397-404). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-011-3640-2_83

Stadermann, F.J., 1991. Cosmic dust: Laboratory analyses of extremely small particles.

https://ntrs.nasa.gov/search.jsp?R=19910010700

Sutton, S.R., Cholewa, M., Bench, G., Saint, A., Legge, G.J.F., Weirup, D. and Flynn, G.J., 1991. Scanning transmission ion microscopy (STIM), a new technique for density mapping of microstructures (No. UCRL-JC-106553; CONF-9103134-4). Lawrence Livermore National Lab., CA (USA).

https://www.osti.gov/biblio/5847916

Sutton, S.R., Cholewa, M., Bench, G., Saint, A., Legge, G.J.F., Weirup, D. and Flynn, G.J., 1991, March. Scanning Transmission Ion Microscopy (STIM): A New Technique for Density Mapping of Micrometeorites. In Lunar and Planetary Science Conference (Vol. 22).

http://adsabs.harvard.edu/full/1991LPI....22.1363S

Thiel, K., Bradley, J.P. and Spohr, R., 1991. Investigation of solar flare tracks in IDPs: some recent results.[Solar cosmic ray tracks in interplanetary dust particles].

https://www.osti.gov/etdeweb/biblio/5759522

Thiel, K., Bradley, J.P. and Spohr, R., 1991. Investigation of solar flare tracks in IDPs: Some recent results. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements19(1-4), pp.709-718.

https://www.sciencedirect.com/science/article/abs/pii/135901899190298V

Tomeoka, K., 1991. Aqueous alteration in hydrated interplanetary dust particles. In Origin and Evolution of Interplanetary Dust (pp. 71-78). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-011-3640-2_14

Tomeoka, K., 1991. Mineralogy of interplanetary dust particles: a review. Kobutsugaku Zasshi20(3), pp.105-122.

https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5542035

1990

Allamandola, L.J., Sandford, S.A. and Wopenka, B., 1990. The possible presence of interstellar PAHs in meteorites and interplanetary dust particles (No. N--90-27562).

https://inis.iaea.org/search/search.aspx?orig_q=RN:22064961

Brownlee, D.E., 1990. Carbon in comet dust.

https://ntrs.nasa.gov/search.jsp?R=19900018248

Buch, V., 1990. Interstellar grain chemistry. In Molecular astrophysics: a volume honouring Alexander Dalgarno.

https://inis.iaea.org/search/search.aspx?orig_q=RN:21069619

Flynn, G.J., 1990. Asteroids as sources of primitive material: evidence from the cosmic dust. In Asteroids, Comets, Meteors III (p. 59).

http://adsabs.harvard.edu/full/1990acm..proc...59F

Flynn, G.J., 1990. The near-Earth enhancement of asteroidal over cometary dust. In Lunar and Planetary Science Conference Proceedings (Vol. 20, pp. 363-371).

http://adsabs.harvard.edu/full/1990LPSC...20..363F

Flynn, G.J. and Sutton, S.R., 1990, March. Chemical purity of proposed capture materials: Implications for trace element analyses on captured particles. In Lunar and Planetary Science Conference (Vol. 21).

http://adsabs.harvard.edu/full/1990LPI....21..371F

Flynn, G.J. and Sutton, S.R., 1990, March. Evidence for a bimodal distribution of cosmic dust densities. In Lunar and Planetary Science Conference (Vol. 21).

http://adsabs.harvard.edu/full/1990LPI....21..375F

Flynn, G.J. and Sutton, S.R., 1990, March. Element Abundances in Seven Particles from the Large Area Collectors. In Lunar and Planetary Science Conference (Vol. 21).

http://adsabs.harvard.edu/full/1990LPI....21..373F

Germani, M.S., Bradley, J.P. and Brownlee, D.E., 1990. Automated thin-film analyses of hydrated interplanetary dust particles in the analytical electron microscope. Earth and Planetary Science Letters101(2-4), pp.162-179.

https://www.sciencedirect.com/science/article/abs/pii/0012821X9090151M

Hartmetz, C.P., Gibson, E.K. and Blanford, G.E., 1990. In situ extraction and analysis of volatiles and simple molecules in interplanetary dust particles, contaminants, and silica aerogel. In Lunar and Planetary Science Conference Proceedings (Vol. 20, pp. 343-355).

http://adsabs.harvard.edu/full/1990LPSC...20..343H

Horz, F. and Grounds, D., 1990, April. The cosmic dust collection facility on space station Freedom. In Orbital Debris Conference: Technical Issues and Future Directions (p. 1351).

https://arc.aiaa.org/doi/abs/10.2514/6.1990-1351

Hoerz, F., Brownlee, D.E., Bunch, T.E., Grounds, D., Grun, E., Rummel, Y., Quaide, W.L. and Walker, R.M., 1990. Cosmic Dust Collection Facility: Scientific objectives and programmatic relations.

https://ntrs.nasa.gov/search.jsp?R=19900011782

Kapiáinsky, I. and Stohl, J., 1990. COSMIC DUST CÁTALOS: SOME PRELIMINARY ASTRONOMICAL RESULTS BASED ON STATISTICAL ANALYSES OF CDC DATA. Contributions of the Astronomical Observatory Skalnate Pleso19, p.339.

http://cygnus.astro.sk/caosp/Eedition/FullTexts/vol19/pp339-346.pdf

Lindstrom, D.J., 1990. Analysis of submicrogram samples by INAA. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment299(1-3), pp.584-588.

https://www.sciencedirect.com/science/article/pii/0168900290908492

Lindstrom, D.J., Zolensky, M.E. and Martinez, R.R., 1990, March. INAA of cosmic dust particles from the Large Area Collector. In Lunar and Planetary Science Conference (Vol. 21).

https://www.sciencedirect.com/science/article/abs/pii/0012821X9090031R

Mandeville, J.C., 1990. Aragatz mission dust collection experiment. Advances in Space Research10(3-4), pp.397-401.

https://www.sciencedirect.com/science/article/pii/027311779090377C

Mohnen, V.A., 1990. Stratospheric ion and aerosol chemistry and possible links with cirrus cloud microphysics—A critical assessment. Journal of the atmospheric sciences47(16), pp.1933-1948.

https://link.springer.com/chapter/10.1007/978-94-011-3640-2_10

Nier, A.O. and Schlutter, D.J., 1990. Helium and neon isotopes in stratospheric particles. Meteoritics25(4), pp.263-267.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1990.tb00710.x

Rietmeijer, E.J.M. and Mackinnon, I.D., 1990. Titanium oxide Magneli phases in four chondritic porous interplanetary dust particles. In Lunar and Planetary Science Conference Proceedings (Vol. 20, pp. 323-333).

http://adsabs.harvard.edu/full/1990LPSC...20..323R

Stadermann, F.J., Walker, R.M. and Zinner, E., 1990, March. Stratospheric dust collection: An isotopic survey of terrestrial and cosmic particles. In Lunar and Planetary Science Conference (Vol. 21).

http://adsabs.harvard.edu/full/1990LPI....21.1190S

Sutton, S.R., Bradley, J.P. and Flynn, G.J., 1990, March. Trace element compositions and mineralogy of low-nickel stratospheric particles. In Lunar and Planetary Science Conference (Vol. 21).

http://adsabs.harvard.edu/full/1990LPI....21.1225S

Testa Jr, J.P., Stephens, J.R., Berg, W.W., Cahill, T.A., Onaka, T., Nakada, Y., Arnold, J.R., Fong, N. and Sperry, P.D., 1990. Collection of microparticles at high balloon altitudes in the stratosphere. Earth and planetary science letters98(3-4), pp.287-302.

https://www.sciencedirect.com/science/article/abs/pii/0012821X9090031R

Vogt, S., Herzog, G.F. and Reedy, R.C., 1990. Cosmogenic nuclides in extraterrestrial materials. Reviews of Geophysics28(3), pp.253-275.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RG028i003p00253

ZOOK, H., MCKAY, D. and BERNHARD, R., 1990, April. Results from returned spacecraft surfaces. In Orbital Debris Conference: Technical Issues and Future Directions (p. 1349).

https://arc.aiaa.org/doi/abs/10.2514/6.1990-1349

1989

Blake, D.F., Fleming, R.H. and Bunch, T.E., 1989. Identification and characterization of a carbonaceous, titanium containing interplanetary dust particle. In 20th Lunar and Planetary Science Conference (Vol. 698, p. 5).

http://adsabs.harvard.edu/full/1989LPICo.698....5B

Brownlee, D.E., 1989. Comets, Meteorites and Interplanetary Dust. In Highlights of Astronomy (pp. 281-286). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-009-0977-9_43

Flynn, G.J., 1989. Atmospheric entry heating: A criterion to distinguish between asteroidal and cometary sources of interplanetary dust. Icarus77(2), pp.287-310.

https://www.sciencedirect.com/science/article/abs/pii/0019103589900912

Flynn, G.J., 1989. Atmospheric entry heating of micrometeorites. In Lunar and Planetary Science Conference Proceedings (Vol. 19, pp. 673-682).

http://adsabs.harvard.edu/full/1989LPSC...19..673F

Flynn, G.J. and Sutton, S.R., 1989. Minor and trace elements in nine cosmic class stratospheric particles: Three particles with igneous abundance patterns. Meteoritics24, p.267.

http://adsabs.harvard.edu/full/1989Metic..24R.267F

Flynn, G.J. and Sutton, S.R., 1989. Minor and Trace Element Abundances in Eight" Chondritic" Stratospheric Particles: Evidence for Ni Depletions. In 52nd Annual Meeting of the Meteoritical Society (Vol. 712, p. 62).

http://adsabs.harvard.edu/full/1989LPICo.712...62F

Flynn, G.J. and Sutton, S.R., 1989. Synchrotron x-ray fluorescence analyses of stratospheric cosmic dust: New results for chondritic and nickel-depleted particles (No. BNL-42627; CONF-8903111-4). Brookhaven National Lab., Upton, NY (USA).

https://www.osti.gov/biblio/6064519

Lindstrom, D.J., Zolensky, M.E. and Lindstrom, R.M., 1989, March. Procedures for instrumental neutron activation analysis of individual cosmic dust particles. In Lunar and Planetary Science Conference (Vol. 20).

http://adsabs.harvard.edu/full/1989LPI....20..574L

Maurette, M., Brownlee, D.E. and Schramm, L.S., 1989, March. Giant micrometeorites from Antarctic blue ice. In Lunar and Planetary Science Conference (Vol. 20).

http://adsabs.harvard.edu/full/1989LPI....20..636M

Rietmeijer, F.J., 1989. Extraterrestrial sulfur in the lower stratosphere contributed by chondritic interplanetary dust particles. Meteoritics24, p.319.

http://adsabs.harvard.edu/full/1989Metic..24Q.319R

Rietmeijer, F.J., 1989. Tin in a chondritic interplanetary dust particle. Meteoritics24(1), pp.43-47.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1989.tb00940.x

Rietmeijer, F.J.M., 1989. Ultrafine-grained mineralogy and matrix chemistry of olivine-rich chondritic interplanetary dust particles. In Lunar and Planetary Science Conference Proceedings (Vol. 19, pp. 513-521).

http://adsabs.harvard.edu/full/1989LPSC...19..513R

Rietmeijer, F.J.M. and Albrecht, A., 1989, March. Preparation of Cosmic Dust Analogs for Shock Metamorphism. In Lunar and Planetary Science Conference (Vol. 20).

http://adsabs.harvard.edu/full/1989LPI....20..900R

Sandford, S.A. and Bradley, J.P., 1989. Interplanetary dust particles collected in the stratosphere: Observations of atmospheric heating and constraints on their interrelationship and sources. Icarus82(1), pp.146-166.

https://www.sciencedirect.com/science/article/abs/pii/0019103589900286

Sandford, S.A., 1989. Interstellar dust in collected interplanetary dust particles. In Symposium-International astronomical union (Vol. 135, pp. 403-414). Cambridge University Press.

https://www.cambridge.org/core/journals/symposium-international-astronomical-union/article/interstellar-dust-in-collected-interplanetary-dust-particles/AB7BCE5A9C9AACF1649EBB9FE1388F7C

Schramm, L.S., Brownlee, D.E. and Wheelock, M.M., 1989. Major element composition of stratospheric micrometeorites. Meteoritics24(2), pp.99-112.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1989.tb00950.x

Sutton, S.R. and Flynn, G.J., 1989. Density estimates for eleven cosmic dust particles based on synchrotron x-ray fluorescence analyses. Meteoritics24, p.329.

http://adsabs.harvard.edu/full/1989Metic..24S.329S

Sutton, S.R. and Flynn, G.J., 1989, March. Trace element compositions of interplanetary dust and terrestrial particles collected from the stratosphere. In Lunar and Planetary Science Conference (Vol. 20).

http://adsabs.harvard.edu/full/1989LPI....20.1091S

Zolensky, M.E., McKay, D.S. and Kaczor, L.A., 1989. A tenfold increase in the abundance of large solid particles in the stratosphere, as measured over the period 1976–1984. Journal of Geophysical Research: Atmospheres94(D1), pp.1047-1056.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD094iD01p01047

1988

Blanford, G.E., Thomas, K.L. and McKay, D.S., 1988. Microbeam analysis of four chondritic interplanetary dust particles for major elements, carbon and oxygen. Meteoritics23(2), pp.113-121.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1988.tb00906.x

Blanford, G.E., Thomas, K.L. and McKay, D.S., 1988, March. Microbeam analysis of chondritic interplanetary dust particles for carbon, oxygen, and major elements. In Lunar and Planetary Science Conference (Vol. 19).

http://adsabs.harvard.edu/full/1988LPI....19..102B

Bradley, J.P., 1988. Analysis of chondritic interplanetary dust thin-sections. Geochimica et Cosmochimica Acta52(4), pp.889-900.

https://www.sciencedirect.com/science/article/abs/pii/0016703788903596

Carey, W.C. and Gibbons, P.C., 1988. Electron Energy Loss Spectroscopy (EELS): Light Element Analysis of Collected Cosmic Dust. In Progress Toward a Cosmic Dust Collection Facility on Space Station (p. 24).

http://adsabs.harvard.edu/full/1988cdcf.work...24C

Clark, B.C., Mason, L.W. and Kissel, J., 1988. Systematics of the “CHON“ and other light-element particle populations in Comet P/Halley. In Exploration of Halley's Comet (pp. 779-784). Springer, Berlin, Heidelberg.

https://link.springer.com/chapter/10.1007/978-3-642-82971-0_133

Flynn, G.J., 1988, March. Is the Stratospheric Cosmic Dust an Unbiased Sample of the Interplanetary Dust Cloud at I Au?. In Lunar and Planetary Science Conference (Vol. 19).

http://adsabs.harvard.edu/full/1988LPI....19..340F

Gehrz, R.D. and Hanner, M.S., 1988. Cometary dust composition.

https://ntrs.nasa.gov/search.jsp?R=19890003962

Kerr, R.A., 1988. Asteroid and comet dust in space.... Science241(4873), pp.1603-1604.

https://go.gale.com/ps/anonymous?id=GALE%7CA6698140&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=00368075&p=AONE&sw=w

Rietmeijer, F.J., 1988. Enhanced residence of submicron Si-rich volcanic particles in the lower stratosphere. Journal of volcanology and geothermal research34(3-4), pp.173-184.

https://www.sciencedirect.com/science/article/abs/pii/0377027388900315

Stephens, J.R., 1988. Light Scattering from Simulated Interstellar Dust. In Experiments on Cosmic Dust Analogues (pp. 245-252). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-009-3033-9_24

Sutton, S.R. and Flynn, G.J., 1988, March. Micrometeorite Component of Halogens and Sulfur in the Lower Stratosphere. In Lunar and Planetary Science Conference (Vol. 19).

http://adsabs.harvard.edu/full/1988LPI....19.1154S

Sutton, S.R. and Flynn, G.J., 1988. Stratospheric particles. In Proceedings of the eighteenth lunar and planetary science conference.

https://inis.iaea.org/search/search.aspx?orig_q=RN:21060795

Treiman, A.H., Jones, J.H., Janssens, M.J., Wolf, R. and Ebihara, M., 1988. Angra Dos Reis: Complex Silicate Fractionations. Meteoritics23, p.305.

http://adsabs.harvard.edu/full/1988Metic..23R.305T

Thiel, K., Bradley, J.P. and Spohr, R., 1988. On the nature of latent nuclear tracks in cosmic dust particles. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements15(1-4), pp.685-688.

https://www.sciencedirect.com/science/article/abs/pii/1359018988902282

Wright, I.P., Carr, R.H. and Pillinger, C.T., 1988. Carbon Stable Isotope Analyses of Individual Deep‐Sea Spherules. Meteoritics23(4), pp.339-347.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1945-5100.1988.tb00919.x

Zolensky, M.E., Webb, S.J. and Thomas, K.A.T.H.I.E., 1988. The search for refractory interplanetary dust particles from preindustrial aged Antarctic ice. In Lunar and Planetary Science Conference Proceedings (Vol. 18, pp. 599-605).

http://adsabs.harvard.edu/full/1988LPSC...18..599Z

1987

Blanford, G.E., 1987. Analysis of laser extracted volatiles in carbonaceous chondrites.

https://ntrs.nasa.gov/search.jsp?R=19880005479

Blanford, G.E. and Gibson, E.K., 1987. ANALYSIS OF LASER EXTRACTED VOLATILES IN. William B. Jones, Jr., Editor Texas A&M University College Station, Texas.

https://core.ac.uk/download/pdf/42833979.pdf#page=84

Blanford, G.E., Verploeg, K.T. and McKay, D.S., 1987, March. Microbeam analysis of interplanetary dust particles for major elements, oxygen and carbon. In Lunar and Planetary Science Conference (Vol. 18).

http://adsabs.harvard.edu/full/1987LPI....18...89B

Bonté, P., Jéhanno, C., Maurette, M. and Robin, E., 1987, March. A High Abundance and Great Diversity of" Unmelted" Cosmic Dust Grains on the West Greenland Ice CAP. In Lunar and Planetary Science Conference (Vol. 18).

http://adsabs.harvard.edu/full/1987LPI....18..105B

Brownlee, D.E., 1987. Morphological, chemical and mineralogical studies of cosmic dust. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences323(1572), pp.305-311.

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1987.0087

Clube, S.V.M., 1987. The origin of dust in the solar system. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences323(1572), pp.421-436.

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1987.0096

Corso, G.J., 1987. Cosmic dust collection with a sub satellite tethered to a Space Station.

https://ntrs.nasa.gov/search.jsp?R=19890005639

Flynn, G.J., 1987. Atmospheric entry heating of cosmic dust.

https://ntrs.nasa.gov/search.jsp?R=19880005483

Flynn, G.J., 1987, March. Earth encounter velocities and exposure ages of IDPs from asteroidal and cometary sources. In Lunar and Planetary Science Conference (Vol. 18).

http://adsabs.harvard.edu/full/1987LPI....18..294F

Flynn, G.J. and Sutton, S.R., 1987, March. First cosmic dust trace element analyses with the Synchrotron XRF microprobe. In Lunar and Planetary Science Conference (Vol.

18).

http://adsabs.harvard.edu/full/1987LPI....18..296F

Jessberger, E.K., Kissel, J., Fechtig, H. and Krueger, F.R., 1987. On the average chemical composition of cometary dust. In Physical Processes in Comets, Stars and Active Galaxies (pp. 26-33). Springer, Berlin, Heidelberg.

https://link.springer.com/chapter/10.1007/978-3-642-72640-8_3

Lavrukhina, A.K. and Mendybaev, R.A., 1987. The origin of cosmic dust. Geokhimiia, pp.1674-1693.

https://ui.adsabs.harvard.edu/abs/1987Geokh.....1674L/abstract

Lewis, R.S., Ming, T., Wacker, J.F., Anders, E. and Steel, E., 1987. Interstellar diamonds in meteorites. Nature326(6109), pp.160-162.

https://www.nature.com/articles/326160a0

Mackinnon, I.D., 1987. Secrets of black dust revealed. Nature328(6132), pp.670-671.

https://www.nature.com/articles/328670a0

Mackinnon, I.D. and Rietmeijer, F.J., 1987. Mineralogy of chondritic interplanetary dust particles. Reviews of Geophysics25(7), pp.1527-1553.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RG025i007p01527

Mackinnon, I.D., Rietmeijer, F.J. and McKay, D.S., 1987. Analytical electron microscopy of fine-grained phases in primitive interplanetary dust particles and carbonaceous chondrites. Vol. 89810.

https://eprints.qut.edu.au/198634/

McKeegan, K.D., 1987. Ion-microprobe measurements of H, C, O, Mg, and Si isotopic abundances in individual interplanetary-dust particles.

https://inis.iaea.org/search/search.aspx?orig_q=RN:20024503

Pillinger, C.T., 1987. Stable isotope measurements of meteorites and cosmic dust grains. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences323(1572), pp.313-322.

https://royalsocietypublishing.org/doi/abs/10.1098/rsta.1987.0088

Rietmeijer, J.M., 1987. chemical, mineralogical, structural and physical properties of the projectile [22]. In this respect, original is defined as" those properties of the projectile prior to impact" and may include. PROGRESS TOWARD A COSMIC DUST COLLECTION FACILITY ON SPACE STATION, p.53.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880010182.pdf#page=58

Rietmeijer, F.J.M., 1987, March. Silicone oil: a persistent contaminant in chemical and spectral micro-analyses of interplanetary dust particles. In Lunar and Planetary Science Conference (Vol. 18).

http://adsabs.harvard.edu/full/1987LPI....18..836R

Rietmeijer, F.J. and Mackinnon, I.D., 1987. Metastable carbon in two chondritic porous interplanetary dust particles. Nature326(6109), pp.162-165.

https://www.nature.com/articles/326162a0

Sutton, S.R. and Flynn, G.J., 1987. Stratospheric particles: Synchrotron X-ray fluorescence determination of trace element contents (No. BNL--39991). Brookhaven National Lab.

https://inis.iaea.org/search/search.aspx?orig_q=RN:19020293

Tazawa, Y. and Fujii, Y., 1987. New types of spherules from Antarctica: Meteoritic impact origin?. Geophysical Research Letters14(12), pp.1199-1202.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GL014i012p01199

Walker, R.M., 1987, March. Are IDPs and Halley dust similar and, if so, so what?. In Lunar and Planetary Science Conference (Vol. 18, p. 1048).

http://adsabs.harvard.edu/full/1987LPI....18.1048W

Walker, R.M., 1987, August. Comparison of laboratory determined properties of interplanetary dust with those of Comet Halley particles: What are comets made of. In Infrared Observations of Comets Halley and Wilson and Properties of the Grains. NASA Conf. Pub (Vol. 3004, pp. 53-63).

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890003959.pdf#page=69

Webb, S.J. and Zolensky, M.E., 1987, March. Characterization of interplanetary dust particles from Antarctic ice samples. In Lunar and Planetary Science Conference (Vol. 18, p. 1066).

http://adsabs.harvard.edu/full/1987LPI....18.1066W

1986

Blanford, G.E., Rietmeijer, F.J.M., Schramm, L.S. and McKay, D.S., 1986, March. Extraterrestrial olivines brought back from space. In Lunar and Planetary Science Conference (Vol. 17, pp. 56-57).

http://adsabs.harvard.edu/full/1986LPI....17...56B

Bradley, J., Carey, W. and Walker, R.M., 1986, March. Solar Max impact particles: Perturbation of captured material. In Lunar and Planetary Science Conference (Vol. 17, pp. 80-81).

http://adsabs.harvard.edu/full/1986LPI....17...80B

Bradley, J.P. and Brownlee, D.E., 1986. Cometary particles: Thin sectioning and electron beam analysis. Science231(4745), pp.1542-1544.

https://science.sciencemag.org/content/231/4745/1542

Clayton, D.D., 1986. Interrelationships between interstellar and interplanetary grains.

https://ntrs.nasa.gov/search.jsp?R=19860014034

Carey, W.C. and Walker, R.M., 1986. Interplanetary dust: The interstellar connection.

https://ntrs.nasa.gov/search.jsp?R=19860021115

Kerr, R.A., 1986. Comet dust closer to home?. Science232, pp.322-323.

https://go.gale.com/ps/anonymous?id=GALE%7CA4210243&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=00368075&p=HRCA&sw=w

Mackinnon, I.D., 1986. Targeted flight opportunities with large area collectors.

https://ntrs.nasa.gov/search.jsp?R=19860021125

Mackinnon, I.D., 1986. Stratospheric dust collections: Valuable resources for space and atmospheric scientists.

https://ntrs.nasa.gov/search.jsp?R=19860021124

Mackinnon, I.D.R. and McKay, D.S., 1986, March. Refinements and developments on the stratospheric dust database and classification scheme. In Lunar and Planetary Science Conference (Vol. 17, pp. 510-511).

http://adsabs.harvard.edu/full/1986LPI....17..510M

McDonnell, J.A.M., 1986. Extraterrestrial material analysis: Achievements and future opportunities for laboratory analysis in NASA and ESA planetary programmes. Advances in Space Research6(7), pp.21-32.

https://www.sciencedirect.com/science/article/pii/0273117786902061

Rietmeijer, F.J. and Mackinnon, I.D., 1986. Metastable carbon in two chondritic porous interplanetary dust particles.

https://ntrs.nasa.gov/search.jsp?R=19860019424

Rietmeijer, F.J.M., Schramm, L.S., Barrett, R.A., McKay, D.S. and Zook, H.A., 1986. An inadvertent capture cell for orbital debris and micrometeorites; The main electronics box thermal blanket of the solar maximum satellite. Advances in Space Research6(7), pp.145-149.

https://www.sciencedirect.com/science/article/pii/0273117786902243

Rubincam, D.P., 1986. Comment on the paper “On the influx of small comets into the Earth's upper atmosphere II. Interpretation“ by LA Frank, JB Sigwarth, and JD Craven. Geophysical Research Letters13(7), pp.701-701.

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/GL013i007p00701

Sandford, S.A., 1986. Solar flare track densities in interplanetary dust particles: The determination of an asteroidal versus cometary source of the zodiacal dust cloud. Icarus68(3), pp.377-394.

https://www.sciencedirect.com/science/article/abs/pii/001910358690045X

Sandford, S.A., 1987. LABORATORY INFRARED TRANSMISSION SPECTRA FROM 2.5 TO 25 MICRONS OF INDIVIDUAL INTERPLANETARY DUST PARTICLES (COSMIC, INTERSTELLAR, MICROMETEORITES, ASTEROIDS, COMETS).

https://www.elibrary.ru/item.asp?id=7477291

Sandford, S.A., 1986. Laboratory infrared transmission spectra from 2.5 to 25 microns of individual interplanetary.

https://inis.iaea.org/search/search.aspx?orig_q=RN:18025538

Walker, R.M., 1986. Laboratory studies of interplanetary dust.

https://ntrs.nasa.gov/search.jsp?R=19860014027

Zolensky, M.E. and Kaczor, L., 1986, March. Stratospheric particle abundance and variations over the last decade. In Lunar and Planetary Science Conference (Vol. 17, pp. 969-970).

http://adsabs.harvard.edu/full/1986LPI....17..969Z

Zook, H.A. and McKay, D.S., 1986, March. On the asteroidal component of cosmic dust. In Lunar and Planetary Science Conference (Vol. 17, pp. 977-978).

http://adsabs.harvard.edu/full/1986LPI....17..977Z

1985

Belkovich, O.I., Brownless, D.E., Babadzhanov, P.B., Baggaley, W.J., Elford, W.J., Fechtig, H., Hanner, M.S., McDonnell, J.A.M., Stohl, J. and Tomita, K., 1985. 22. Meteors And Interplanetary Dust. Transactions of the International Astronomical Union19(1), pp.235-252.

https://www.cambridge.org/core/journals/transactions-of-the-international-astronomical-union/article/22-meteors-and-interplanetary-dust/9BABDF6DC0B068E77FB54B02DAE799C6

Brownlee, D.E., 1985. Cosmic dust: Collection and research. Annual Review of Earth and Planetary Sciences13(1), pp.147-173.

https://www.annualreviews.org/doi/pdf/10.1146/annurev.ea.13.050185.001051

Brownlee, D.E., 1985. Collection of cosmic dust: Past and future. In International Astronomical Union Colloquium (Vol. 85, pp. 143-147). Cambridge University Press.

https://www.cambridge.org/core/journals/international-astronomical-union-colloquium/article/collection-of-cosmic-dust-past-and-future/D94E4C2998A570B2D692CD47C0BFC7E5

Hörz, F., 1985. Trajectory determinations and collection of micrometeoroids on the space station: report of the Workshop on Micrometeorite Capture Experiments; a Lunar and Planetary Institute Workshop, December 16-18, 1985.

https://repository.hou.usra.edu/handle/20.500.11753/924

McKay, D.S., Rietmeijer, F.J. and Mackinnon, I.D., 1985, March. Mineralogy of chondritic porous aggregates: Current status. In Lunar and Planetary Science Conference (Vol. 16, pp. 536-537).

http://adsabs.harvard.edu/full/1985LPI....16..536M

Mackinnon, I.D. and Mogk, D.W., 1985. Surface sulfur measurements on stratospheric particles. Geophysical research letters12(2), pp.93-96.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GL012i002p00093

Mckeegan, K.D., Walker, R.M. and Zinner, E., 1985. Ion microprobe isotopic measurements of individual interplanetary dust particles. Geochimica et Cosmochimica Acta49(9), pp.1971-1987.

https://www.sciencedirect.com/science/article/abs/pii/0016703785900912

Mogk, D.W., Mackinnon, I.D. and Rietmeijer, F.J., 1985, March. Auger spectroscopy of stratospheric particles: The influence of aerosols on interplanetary dust. In Lunar and Planetary Science Conference (Vol. 16, pp. 569-570).

http://adsabs.harvard.edu/full/1985LPI....16..569M

Mueller, A.C. and Kessler, D.J., 1985. The effects of particulates from solid rocket motors fired in space. Advances in Space Research5(2), pp.77-86.

https://www.sciencedirect.com/science/article/pii/0273117785903898

Nogami, K.I., 1985. Change in the elemental composition of the Henbury iron meteorite by melting experiment. Geochemical Journal19(2), pp.101-105.

https://www.jstage.jst.go.jp/article/geochemj1966/19/2/19_2_101/_article/-char/ja/

Rietmeijer, F.J.M., 1985, March. Low-Temperature Aqueous and Hydrothermal Activity in a Proto-Planetary Body: Goethite, Opal-Ct Gibbsite and Anatase in Chondritic Porous Aggregate W7029* A. In Lunar and Planetary Science Conference (Vol. 16, pp. 696-697).

http://adsabs.harvard.edu/full/1985LPI....16..696R

Rietmeijer, F.J. and Mackinnon, I.D., 1985. Layer silicates in a chondritic porous interplanetary dust particle. Journal of Geophysical Research: Solid Earth90(S01), pp.149-155.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB090iS01p00149

Rietmeijer, F.J. and McKay, D.S., 1985. An interplanetary dust particle analog to matrices of CO/CV carbonaceous chondrites and unmetamorphosed unequilibrated ordinary chondrites. Meteoritics20, p.743.

http://adsabs.harvard.edu/full/1985Metic..20..743R

Rietmeijer, F.J. and Mackinnon, I.D., 1985. A multi-stage history for carbonaceous material in extraterrestrial chondritic porous aggregate W7029* A and a new cosmothermometer. In Lunar and Planetary Science Conference (Vol. 16, pp. 700-701). Lunar and Planetary Institute.

http://eprints.qut.edu.au/56539/

Rietmeijer, F.J. and Mackinnon, I.D., 1985. Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials. Nature315(6022), pp.733-736.

https://www.nature.com/articles/315733a0

Sandford, S.A. and Walker, R.M., 1985. Laboratory infrared transmission spectra of individual interplanetary dust particles from 2.5 to 25 microns. The Astrophysical Journal291, pp.838-851.

http://adsabs.harvard.edu/full/1985ApJ...291..838S

Sano, Y., Toyoda, K. and Wakita, H., 1985. 3 He/4 He ratios of marine ferromanganese nodules. Nature317(6037), pp.518-520.

https://www.nature.com/articles/317518a0

Schramm, L.S., McKay, D.S., Zook, H.A. and Robinson, G.A., 1985, March. Analysis of micrometeorite material captured by the solar max satellite. In Lunar and Planetary Science Conference (Vol. 16, pp. 736-737).

http://adsabs.harvard.edu/full/1985LPI....16..736S

Tomeoka, K. and Buseck, P.R., 1985. Hydrated interplanetary dust particle linked with carbonaceous chondrites?. Nature314(6009), pp.338-340.

https://www.nature.com/articles/314338a0

Weiss-Wrana, K., Giese, R.H. and Zerull, R.H., 1985. Experimental results on scattering by irregular and meteoritic dust particles related to photopolarimetry of zodiacal light and comets. In International Astronomical Union Colloquium (Vol. 85, pp. 223-226). Cambridge University Press.

https://www.cambridge.org/core/journals/international-astronomical-union-colloquium/article/experimental-results-on-scattering-by-irregular-and-meteoritic-dust-particles-related-to-photopolarimetry-of-zodiacal-light-and-comets/59B22E1ED1095858AD62E8996325F9DD

Wisdom, J., 1985. Meteorites may follow a chaotic route to Earth. Nature315(6022), pp.731-733.

https://www.nature.com/articles/315731a0

Wright, I.P., 1985. Stable isotopic compositions of hydrogen, carbon, nitrogen, oxygen and sulfur in meteoritic low temperature condensates. In Ices in the Solar System (pp. 221-249). Springer, Dordrecht.

https://link.springer.com/chapter/10.1007/978-94-009-5418-2_15

Zolensky, M.E., 1985. CAI's Among the Cosmic Dust Collection. Meteoritics20, p.792.

http://adsabs.harvard.edu/full/1985Metic..20..792Z

Zolensky, M.E. and Mackinnon, I.D., 1985. Accurate stratospheric particle size distributions from a flat plate collection surface. Journal of Geophysical Research: Atmospheres90(D3), pp.5801-5808.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JD090iD03p05801

1984

Bradley, J.P., Brownlee, D.E. and Fraundorf, P., 1984. Discovery of nucler tracks in interplanetary dust. Science226(4681), pp.1432-1434.

https://science.sciencemag.org/content/226/4681/1432

Brownlee, D.E., Wheelock, M.M. and Bradley, J.P., 1984, March. Point Count Analysis of Interplanetary Dust and Fine Grained Meteoritic Materials. In Lunar and Planetary Science Conference (Vol. 15, pp. 94-95).

http://adsabs.harvard.edu/full/1984LPI....15...94B

Carr, R.H., Wright, I.P., Pillinger, C.T. and Brownlee, D.E., 1984, March. Carbon isotopic analysis of individual cosmic dust particles. In Lunar and Planetary Science Conference (Vol. 15, pp. 137-138).

http://adsabs.harvard.edu/full/1984LPI....15..137C

Clanton, U.S. and Gooding, J.L., 1985. Survey of probable micrometer-sized Earth-orbital debris fragments in the NASA-JSC cosmic dust sample collection.

https://ntrs.nasa.gov/search.jsp?R=19850012893

Corso, G.J., 1984, March. Cosmic Dust Collection with a Tethered Satellite. In Lunar and Planetary Science Conference (Vol. 15, pp. 186-187).

http://adsabs.harvard.edu/full/1984LPI....15..186C

MacKinnon, I.D., Gooding, J.L., McKay, D.S. and Clanton, U.S., 1984. The El Chichón stratospheric cloud: solid particulates and settling rates. Journal of Volcanology and Geothermal Research23(1-2), pp.125-146.

LINK

Mizutani, K., Maihara, T., Hiromoto, N. and Takami, H., 1984. Near-infrared observation of the circumsolar dust emission during the 1983 solar eclipse. Nature312(5990), pp.134-136.

https://www.nature.com/articles/312134a0

Rietmeijer, F.J. and MacKinnon, I.D., 1984. Melting, ablation, and vapor phase condensation during atmospheric passage of the Bjurbole meteorite. Journal of Geophysical Research: Solid Earth89(S02), pp.B597-B604.

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB089iS02p0B597%4010.1002/%28ISSN%292169-9356.LPSC14

Sandford, S.A., 1985. Laboratory infrared transmission spectra from 2.5 to 25 microns of individual interplanetary dust particles.

https://ui.adsabs.harvard.edu/abs/1985PhDT........78S/abstract

Wohletz, K.H. and McQueen, R.G., 1984. Volcanic and stratospheric dustlike particles produced by experimental water-melt interactions. Geology12(10), pp.591-594.

https://pubs.geoscienceworld.org/gsa/geology/article-abstract/12/10/591/190069

Zinner, E. and McKeegan, K.D., 1984, March. Ion probe measurements of hydrogen and carbon isotopes in interplanetary dust. In Lunar and Planetary Science Conference (Vol. 15, pp. 961-962).

http://adsabs.harvard.edu/full/1984LPI....15..961Z

Zolensky, M.E., Mackinnon, I.D.R. and Mckay, D.S., 1984. Toward a complete inventory of stratospheric dust particles with implications and their classification.

https://ntrs.nasa.gov/search.jsp?R=19840013396