INTRODUCTION: 65056 is a coherent, dark gray, glassy impact melt with abundant vesicles and a few large white clasts (Fig. 1). The exterior surfaces of this rock are smooth suggesting that it represents a complete cooling unit.

65056 was collected from the interior wall of a subdued 20 m crater, ~30 cm from 65055. Although its lunar location is precisely known, its orientation could not be determined in the laboratory due to breakage. Zap pits are absent.
PETROLOGY: The matrix of 65056 is a mesostasis-rich impact melt with thin laths of plagioclase in sheaves, “bow-tie” structures, and radiating clusters (Fig. 2). Interstices are generally cryptocrystalline, not glassy. Some Fe-metal spherules are present.

One clast of coarse-grained cataclastic anorthosite (plagioclases up to 4 mm) and one clast of mafic-rich, recrystallized breccia are sampled by the thin sections (Fig. 2). Ilmenite, troilite and metal (some rusty) are accessory phases in the mafic-rich clast. Both clasts are ~1 cm long.

CHEMISTRY: Rancitelli et al. (1973b) provide whole rock K (K₂O = 0.13%), U (0.41 ppm) and Th (1.55 ppm) abundances by gamma-ray spectroscopy.

EXPOSURE AGE: Rancitelli et al. (1973a) provide whole rock 26Al and 22Na abundance data. From these data Yokoyama et al. (1974) conclude that 65056 is saturated in 26Al activity.

PROCESSING AND SUBDIVISIONS: 65056 was removed from its documented bag as two pieces that fit together. In 1972 several small chips of matrix and clasts were removed as 3 and 4 (Fig. 1). 3 was made into a potted butt from which thin sections 13 and 14 were cut. The two large pieces were numbered 5 and 6 (Fig. 1).