Introduction
Lunar sample 14306 is a clast-rich, crystalline matrix breccia from Station G, Apollo 14 (about 3 crater diameters of Cone Crater). The crystalline matrix breccias from Apollo 14 are thought to be from the Fra Mauro Formation, which was recognized as ejecta from the giant Imbrium Basin (Gilbert 1895).

14306 was photographed on the lunar surface and has been oriented (Swann et al. 1970). It was partially buried. It is somewhat rounded and has micrometeoite craters on most surfaces. There is a prominent vein of black glass, probably produced by the last impact. The saw cuts revealed a nice clastic texture (figure 1).
Anderson et al. (1972) describe 14306 as a “multi generation breccia”. Interior clasts are also clastic in nature, indicating that there may have been earlier breccia-forming events.

The cosmic-ray exposure age is 25 m.y., which is thought to be the age of Cone Crater. There are more micrometeorite craters per unit area on 14306 than just about any other lunar sample (Neukum et al.1973).

Norite clasts in 14306 were dated by ion microprobe to be 4.2 b.y. old.

Petrography
Simonds et al. (1977) noted that 14306 has little matrix, but that it was made of plentiful clasts (>50%) of crystalline matrix breccia.

Wosinski et al. (1972) studied the glass vein that penetrates 14306.
Significant Clasts

Ferroan Anorthosite, 71, 72

Shervais et al. (1983) reported mineral modes and compositions for this small anorthosite clast found only in thin section (figure 5). It is 90% plagioclase (An98), with pyroxene (En67) and minor olivine (Fo70) and augite.

Norite Clast, 63, 65

Meyer et al. (1989) and Nemchin et al. (2008) reported a norite clast with zircons in 14306. The norite is fractured and broken but all the minerals within the clast have chemical compositions that are consistent with one rock (monomic breccia).

Mineralogy

Meyer et al. (1989) and Nemchin et al. (2008) studied several zircons in the norite clasts in 14306. This is one of the few cases where zircons are still attached to their mineral assemblage.

Chemistry

Taylor et al. (1972), Wiik et al. (1973) determined the composition (figures 6 and 8). Ganapathy et al. (1974) discuss the trace element composition of 14306.
Radiogenic age dating
The breccia event represented by 14306 has not been dated (probably 3.9 b.y., by analogy to other Apollo 14 breccias). Norite clast were dated by ion probe (Nenchin et al. 2008).

Cosmogenic isotopes and exposure ages
Crozaz et al. (1972) and Drozd et al. (1974) reported a cosmic ray exposure age of 25 ± 2 m.y. determined by 81Kr, supporting the idea that Cone Crater is this age.

Other Studies
Micrometeorite craters on 14306 were studied by Morrison et al. (1972). Neukum et al. (1973) found that 14306 had a higher density of micrometeorites than other rocks (figure 12).

Summary of Age Data for 14306

<table>
<thead>
<tr>
<th>Pb/Pb zircon</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nenchin et al. 2008</td>
<td>4192 ± 6 m.y.</td>
</tr>
<tr>
<td></td>
<td>4211 ± 7</td>
</tr>
<tr>
<td></td>
<td>4205 ± 6</td>
</tr>
<tr>
<td></td>
<td>4202 ± 12</td>
</tr>
<tr>
<td></td>
<td>4185 ± 57</td>
</tr>
<tr>
<td></td>
<td>4200 ± 6</td>
</tr>
<tr>
<td></td>
<td>4205 ± 7</td>
</tr>
</tbody>
</table>

Processing
14306 was studied in “consortia mode” led by E. Anders. A thick slice (.22) was cut from the center of 14306, yielding two large butt ends (.21 and .23). There are 27 thin sections for 14306, some are cut orthogonal to the others. Note that there is a thin slice (.26) immediately adjacent to the set of thin sections produced from (.27).
Figure 9: Photo of model of 14306 showing thick slab cut from middle. NASA S78-26756.
Figure 10: Processing photo of 14306 after slab was cut. Note the black glass vein. NASA S71-36707.

Figure 11: Processing photo of 14306 slab. Numerous thin sections were made for the two mini-slices shown (.29 and .27). Scale is in cm. NASA S71-37288. (Photo is from the opposite direction of figures.) Cuts were made with wire saw.
Figure 12: Highest areal density of microcraters on lunar rocks reported by various investigators (from Neukum et al. 1973).
Figure 13: Photo of 14306 showing the black glass vein (photo number missing).

Figure 14: Photo of 14306 showing large zap pit. Cube is 1 inch, for scale. Photo number ?
References for 14306

Lunar Sample Compendium
C Meyer 2009

Twedell D., Feight S., Carlson I. and Meyer C. (1978) *Lithologic maps of selected Apollo 14 breccia samples.* Curators Office. JSC 13842

Lunar Sample Compendium
C Meyer 2009