67955
Noritic Anorthosite
163 grams

Mineralogical Mode for 67955
Hollister 1973
Plagioclase: 78.5%
Pyroxene: 14.5%
Olivine: 6%
Opaques: 1%
Metal

Figure 2: Chemical composition of plagioclase and pyroxene in 67955 (from Hollister 1973).

Introduction
67955 was chipped from a large white clast in Outhouse Rock (figure 3). It was returned as several pieces and is friable (figure 1). The exterior surface has a thin brown patina with micrometeorite pits. It is brecciated and has thin black glass veins, but the mineralogy indicates it is a fragment of plutonic rock. However, each split analysed has high Ni, Ir and Au and is presumed to have formed by crystallization of an impact melt sheet.

67955 has been dated at 4.2 b.y. with exposure to cosmic rays for ~ 50 m.y. (age of North Ray Crater).

Petrography
Hollister (1973), Ashwal (1975) and Nord et al. (1975) describe the white clast in 67955 as a brecciated noritic anorthosite made up of various clasts of coarse-grained noritic anorthosite (up to 1.5 cm) which grade to a matrix of finely comminuted mineral grains (figure 4). All mineral grains in the clasts and the matrix have
Look at that shatter cone right there, Charlie. I’ll be darned. It is, I’m sure.

Put your tongs up there and I’ll get a closeup.

OK, here’s a chunk of it. The black rock looks -- some of it is glass coated, Tony, and man, that is a shatter cone.

Charlie, let’s get a piece of it.

OK, here you go. I got a piece. Give me a bag. On the next one how about stepping back and as I point to it, I’ll pull off another piece and we’ll put a couple of pieces in here.

OK.

That’s going in bag 389. OK, let’s take a picture of that. So you’ll know where it came from. It’s badly shattered, Tony, so I don’t know whether it’s going to stay together or not.

Get it, Charlie, I’ll get the picture. That’s right near the shatter cone.

OK 5 samples in 389 Tony.

Lunar Sample Compendium
C Meyer 2010
uniform composition, such that the matrix was formed by brecciation of the parent rock. The typical mineral assemblage in the clasts consists of a large single poikilitic pyroxene enclosing discrete grains of olivine and plagioclase. The surrounding pyroxene oikocryst is either Ca-rich or Ca-poor, but not exsolved (Hollister 1973). Cushing et al. (1999) calculate an equilibrium temperature of mafic minerals as 1112 deg C.

Petrographic descriptions of the recrystallized, brecciated texture of 67955 include terms like “poikiloblastic” (Ryder and Norman 1980), “granulitic impactite” (Warenr et al. 1977), and “hornfels” (Nord et al. 1975). Nord et al. (1975) concluded that 67955 was “not lithified by the North Ray Crater event” and Norman et al. (2007) concluded that 67955 formed from an impact melt with a significant component of meteoritic siderophiles (Ni, Ir and Au).

Dramatic clusters of intertwined, radiating opaque and anorthite (figure 6) and large blobs of metallic iron are found in 67955. Hunter and Taylor (1981) report abundant “rust” and moderate schreibersite. Roedder and Weiblen (1977) studied the glass veins, finding them to be formed from the rock they cut.

Mineralogy

Olivine: Olivine occurs as rounded grains, sometime surrounded by pyroxene (figure 4).

Pyroxene: Hollister (1973) and Ashwal (1975) reported the pyroxene composition, with extremely low Ca in orthopyroxene and high Ca in augite indicating a high temperature of equilibrium (figure 5).

Plagioclase: Hollister (1973) reported the plagioclase in 67955 was An$_{92}$ – An$_{95}$.

Ilmenite: Ashwal (1975) found the ilmenite was Mg rich.

Metal: Misra and Taylor (1975) found 10 % Ni, but no P in metal in 67955. Ashwal (1975) found metal
grains with ~6 % Ni, coexisting with metal grains of ~26 % Ni!

Chemistry

Hubbard et al. (1974), Lindstrom and Salpus (1981), Lindstrom and Lindstrom (1986), Boynton et al. (1976), Wasson et al. (1977) and Palme et al. (1978) determined the chemical composition of 67955 (table 1, figure 7). These splits were consistent with the values determined on the bulk samples by radiation counting. The relatively high Mg/Fe ratio of 67955 distinguishes it from ferroan anorthosites (figure 2). Ganapathy et al. (1974), Boynton et al. (1976) and Palme et al. (1978) found high Ir, Re, and Au and the sample is apprrently not “pristine”.

Radiogenic age dating

Norman et al. (2007) reported a crystallisation age of 4.20 ± 0.07 b.y. determined a Sm/Nd internal mineral isochron (figure 8). They also reported disturbed Rb/Sr and Ar/Ar ages. Nyquist et al. (1974) reported Sr isotopes, while Oberli et al. (1979) reported U/Th/Pb.

Cosmogenic isotopes and exposure ages

Rancitelli et al. (1973) determined the cosmic-ray-induced activity of 22Na = 37 dpm/kg. and 26Al = 125 dpm/kg.

Drozd et al. (1974, 1977) found the exposure age of 67955 was ~ 50 m.y. – the age of North Ray Crater.

Processing

This sample has been chipped, not sawn, in order to obtain clean splits for analysis (figures 9 - 11).
Table 1. Chemical composition of 67955.

<table>
<thead>
<tr>
<th>reference weight</th>
<th>LSPET73</th>
<th>Ganapa74</th>
<th>Hubbard74</th>
<th>Lundstrom81</th>
<th>Boynton76</th>
<th>Wasson77</th>
<th>Lindstrom86</th>
<th>Palme78Rancettelli73</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2 %</td>
<td>45.01</td>
<td>(a)</td>
<td>45.01</td>
<td>(a)</td>
<td>45.01</td>
<td>(a)</td>
<td>45.01</td>
<td>(a)</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.27</td>
<td>(a)</td>
<td>0.28</td>
<td>(d)</td>
<td>0.34</td>
<td>(d)</td>
<td>0.32</td>
<td>(d)</td>
</tr>
<tr>
<td>Al2O3</td>
<td>27.68</td>
<td>(a)</td>
<td>27.45</td>
<td>(a)</td>
<td>28.58</td>
<td>(d)</td>
<td>26.64</td>
<td>(d)</td>
</tr>
<tr>
<td>FeO</td>
<td>3.84</td>
<td>(a)</td>
<td>3.82</td>
<td>(d)</td>
<td>4.33</td>
<td>(d)</td>
<td>3.93</td>
<td>(d)</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05</td>
<td>(a)</td>
<td>0.06</td>
<td>(d)</td>
<td>0.07</td>
<td>(d)</td>
<td>0.054</td>
<td>(d)</td>
</tr>
<tr>
<td>MgO</td>
<td>7.69</td>
<td>(a)</td>
<td>9.16</td>
<td>(d)</td>
<td>6.83</td>
<td>(d)</td>
<td>10.36</td>
<td>(d)</td>
</tr>
<tr>
<td>CaO</td>
<td>15.54</td>
<td>(a)</td>
<td>15.41</td>
<td>(d)</td>
<td>15.35</td>
<td>(d)</td>
<td>14.89</td>
<td>(d)</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.40</td>
<td>(a)</td>
<td>0.35</td>
<td>(d)</td>
<td>0.35</td>
<td>(d)</td>
<td>0.33</td>
<td>(d)</td>
</tr>
<tr>
<td>K2O</td>
<td>0.05</td>
<td>(a)</td>
<td>0.053</td>
<td>(c)</td>
<td>0.055</td>
<td>(d)</td>
<td>0.064</td>
<td>(d)</td>
</tr>
<tr>
<td>Sc ppm</td>
<td>6.5</td>
<td>(d)</td>
<td>7.4</td>
<td>(d)</td>
<td>7.1</td>
<td>(d)</td>
<td>6.26</td>
<td>(d)</td>
</tr>
<tr>
<td>V</td>
<td>26</td>
<td>(d)</td>
<td>25</td>
<td>(d)</td>
<td>24</td>
<td>(d)</td>
<td>17</td>
<td>(d)</td>
</tr>
<tr>
<td>Cr</td>
<td>750</td>
<td>(a)</td>
<td>659</td>
<td>(c)</td>
<td>877</td>
<td>(d)</td>
<td>787</td>
<td>(d)</td>
</tr>
<tr>
<td>Co</td>
<td>26</td>
<td>(d)</td>
<td>15</td>
<td>(d)</td>
<td>19.6</td>
<td>(d)</td>
<td>28.9</td>
<td>(d)</td>
</tr>
<tr>
<td>Ni</td>
<td>108</td>
<td>(a)</td>
<td>231</td>
<td>(b)</td>
<td>185</td>
<td>(d)</td>
<td>170</td>
<td>(d)</td>
</tr>
<tr>
<td>Cu</td>
<td>6.7</td>
<td>(b)</td>
<td>5</td>
<td>(b)</td>
<td>7</td>
<td>(b)</td>
<td>8.16</td>
<td>(b)</td>
</tr>
<tr>
<td>Zn</td>
<td>4</td>
<td>(b)</td>
<td>4.2</td>
<td>(b)</td>
<td>4.2</td>
<td>(b)</td>
<td>3.52</td>
<td>(b)</td>
</tr>
<tr>
<td>Mn</td>
<td>0.6</td>
<td>(a)</td>
<td>1.2</td>
<td>(b)</td>
<td>0.884</td>
<td>(c)</td>
<td>0.93</td>
<td>(c)</td>
</tr>
<tr>
<td>Sr</td>
<td>170</td>
<td>(a)</td>
<td>169.1</td>
<td>(c)</td>
<td>195</td>
<td>(d)</td>
<td>205</td>
<td>(d)</td>
</tr>
<tr>
<td>Y</td>
<td>16</td>
<td>(a)</td>
<td>17</td>
<td>(b)</td>
<td>17</td>
<td>(b)</td>
<td>17</td>
<td>(b)</td>
</tr>
<tr>
<td>Zr</td>
<td>59</td>
<td>(a)</td>
<td>124</td>
<td>(c)</td>
<td>50</td>
<td>(d)</td>
<td>66</td>
<td>(d)</td>
</tr>
<tr>
<td>Nb</td>
<td>4</td>
<td>(a)</td>
<td>7</td>
<td>(b)</td>
<td>6</td>
<td>(b)</td>
<td>6</td>
<td>(b)</td>
</tr>
<tr>
<td>Hf</td>
<td>0.23</td>
<td>(b)</td>
<td>0.23</td>
<td>(b)</td>
<td>0.23</td>
<td>(b)</td>
<td>0.23</td>
<td>(b)</td>
</tr>
<tr>
<td>Ta</td>
<td>0.36</td>
<td>(b)</td>
<td>0.36</td>
<td>(b)</td>
<td>0.36</td>
<td>(b)</td>
<td>0.36</td>
<td>(b)</td>
</tr>
<tr>
<td>W ppm</td>
<td>0.572</td>
<td>(b)</td>
<td>0.572</td>
<td>(b)</td>
<td>0.572</td>
<td>(b)</td>
<td>0.572</td>
<td>(b)</td>
</tr>
<tr>
<td>Re ppm</td>
<td>0.36</td>
<td>(b)</td>
<td>0.36</td>
<td>(b)</td>
<td>0.36</td>
<td>(b)</td>
<td>0.36</td>
<td>(b)</td>
</tr>
<tr>
<td>Os ppm</td>
<td>1.03</td>
<td>(c)</td>
<td>1.12</td>
<td>(d)</td>
<td>0.97</td>
<td>(d)</td>
<td>1.08</td>
<td>(d)</td>
</tr>
<tr>
<td>Ir ppm</td>
<td>5.56</td>
<td>(b)</td>
<td>7.2</td>
<td>(b)</td>
<td>8</td>
<td>(b)</td>
<td>11</td>
<td>(b)</td>
</tr>
<tr>
<td>Pt ppm</td>
<td>1.6</td>
<td>(b)</td>
<td>2</td>
<td>(b)</td>
<td>2.2</td>
<td>(b)</td>
<td>2</td>
<td>(b)</td>
</tr>
<tr>
<td>Au ppm</td>
<td>1.9</td>
<td>(a)</td>
<td>2.0</td>
<td>(a)</td>
<td>2.0</td>
<td>(a)</td>
<td>2.0</td>
<td>(a)</td>
</tr>
<tr>
<td>Th ppm</td>
<td>0.38</td>
<td>(c)</td>
<td>0.34</td>
<td>(d)</td>
<td>0.32</td>
<td>(d)</td>
<td>0.33</td>
<td>(d)</td>
</tr>
<tr>
<td>U ppm</td>
<td>0.28</td>
<td>(d)</td>
<td>0.28</td>
<td>(d)</td>
<td>0.28</td>
<td>(d)</td>
<td>0.28</td>
<td>(d)</td>
</tr>
</tbody>
</table>

Technique: (a) XRF, (b) RNAA, (c) IDMS, (d) INAA, (e) mixed, (f) radiation counting

Lunar Sample Compendium
C Meyer 2010
Figure 9: Initial processing of 67955,1 Cube is 1 inch. S73-22428.

Figure 10: Photo of 67955,1 prior to second round of sampling. Cube is 1 inch. S92-33078.
Figure 11: Processing photo for sampling 67955,1 in 1992. Cube is 1 cm. S92-32811.
References for 67955

Ryder G. and Norman M.D. (1980) Catalog of Apollo 16 rocks (3 vol.). Curator’s Office pub. #52, JSC #16904

