Fukuda, K.,
Brownlee, D.E.,
Joswiak, D.J.,
Tenner, T.J.,
Kimura, M.,
and Kita, N.T.,
2021,
Correlated isotopic and chemical evidence for condensation origins of olivine in comet 81P/Wild 2 and in AOAs from CV and CO chondrites. Geochimica et Cosmochimica Acta, 293, 544–574,
https://doi.org/10.1016/j.gca.2020.09.036.
|
Borlina, C. S.,
Weiss, B. P.,
Bryson, J. F.,
Bai, X. N.,
Lima, E. A.,
Chatterjee, N.,
& Mansbach, E. N.,
2021,
Paleomagnetic evidence for a disk substructure in the early solar system. Science Advances, 7, eabj6928,
https://www.science.org/doi/10.1126/sciadv.abj6928.
|
Hiroi, T.,
Ohtsuka, K.,
Howard, K.T.,
Robertson, K.R.,
and Milliken, R.E.,
Kaiden, H.,
Imae, N.,
Misawa, K.,
Kojima, H.,
Sasakia, S.,
Matsuokaa, M.,
Nakamura, T.,
Bish, D.L.,
2021,
UV-visible-infrared spectral survey of Antarctic carbonaceous chondrite chips. Polar Science, 29, 100723,
https://doi.org/10.1016/j.polar.2021.100723.
|
Li, Y.,
Rubin, A.E.,
and Weibiao, H.,
2021,
Formation of metallic-Cu-bearing mineral assemblages in type-3 ordinary and CO chondrites, American Mineralogist, 106, 1751–1767,
https://doi.org/10.2138/am-2021-7689.
|
Patzer, A.,
Bullock, E.S.,
and Alexander, C.M.O’D.,
2021,
Testing models for the compositions of chondrites and their components: I. CO chondrites. Geochimica et Cosmochimica Acta, 304, 119–140,
https://doi.org/10.1016/j.gca.2021.04.004.
|
Piani, L.,
Marrocchi, Y.,
Vacher, L.G.,
Yurimoto, H.,
and Bizzarro, M.,
2021,
Origin of hydrogen isotopic variations in chondritic water and organics. Earth and Planetary Science Letters, 567, 117008,
https://doi.org/10.1016/j.epsl.2021.117008.
|
Prestgard, T.,
Bonal, L.,
Eschrig, J.,
Gattacceca, J.,
Sonzogni, C.,
and Beck, P.,
2021,
Miller Range 07687 and its place within the CM-CO clan. Meteoritics & Planetary Science, 56, 1758–1783,
doi: 10.1111/maps.13736.
|
Schrader, D.L.,
Davidson, J.,
McCoy, T.J.,
Zega, T.J.,
Russell, S.S.,
Domanik, K.J.,
and King, A.J.,
2021,
The Fe/S ratio of pyrrhotite group sulfides in chondrites: An indicator of oxidation and implications for return samples from asteroids Ryugu and Bennu. Geochimica et Cosmochimica Acta, 303, 66–91,
https://doi.org/10.1016/j.gca.2021.03.019.
|
Shimizu, K.,
Alexander, C.M.O’D.,
Hauri, E.H.,
Sarafian, A.R.,
Nittler, L.R.,
Wang, J.,
Jacobsen, S.D.,
and Mendybaev, R.A.,
2021,
Highly volatile element, H, C, F, Cl, S, abundances and H isotopic compositions in chondrules from carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta, 301, 230–258,
https://doi.org/10.1016/j.gca.2021.03.005.
|
Sridhar, S.,
Bryson, J. F,
King, A. J.,
& Harrison, R. J.,
2021,
Constraints on the ice composition of carbonaceous chondrites from their magnetic mineralogy. Earth and Planetary Science Letters, 576, 117243.
|
Yesiltas, M.,
Young, J.,
Glotch, T.,
2021,
Thermal metamorphic history of Antarctic CV3 and CO3 chondrites inferred from the first- and second-order Raman peaks of polyaromatic organic carbon. American Mineralogist, 106, 506-517,
doi: 10.2138/am-2021-7507.
|
Yesiltas, M.,
Glotch, T. D.,
& Sava, B.,
2021,
Nano-FTIR spectroscopic identification of prebiotic carbonyl compounds in Dominion Range 08006 carbonaceous chondrite. Scientific reports, 11, 9-Jan,
https://doi.org/10.1038/s41598-021-91200-8.
|
Eschrig, J.,
Bonal, L.,
Beck, P.,
Prestgard, T.J.,
2021,
Spectral reflectance analysis of type 3 carbonaceous chondrites and search for their asteroidal parent bodies. Icarus, 354, 114034,
https://doi.org/10.1016/j.icarus.2020.114034.
|
Zhang, M.,
Bonato, E.,
King, A.J.,
Russell, S.S.,
Tang, G.,
Lin, Y.,
2020,
Petrology and oxygen isotopic composition of calcium-aluminum-rich inclusions in primitive CO3.0-3.1 chondrites. Meteoritics & Planetary Science, 55, 911-956,
doi: 10.1111/maps.13473.
|
Zega, T.,
Haencour, P.,
Floss, C.,
2020,
An in situ investigation on the origins and processing of circumstellar oxide and silicate grains in carbonaceous chondrites. Meteoritics & Planetary Science, 55, 1207-1227,
doi: 10.1111/maps.13418.
|
Ma, C.,
Krot, A. N.,
Beckett, J. R.,
Nagashima, K.,
Tschauner, O.,
Rossman, G. R.,
Simon, S. B.,
Bischoff, A.,
2020,
Warkite, Ca2Sc6Al6O20, a new mineral in carbonaceous chondrites and a key-stone phase in ultrarefractory inclusions from the solar nebula. Geochimica et Cosmochimica Acta, 277, 52-86,
doi: 10.1016/j.gca.2020.03.002.
|
Haenecour, P.,
Floss, C.,
Brearley, A.J.,
and Zega, T.J.,
2020,
The effects of secondary processing in the unique carbonaceous chondrite Miller Range 07687. Meteoritics & Planetary Science, 55, 1228-1256,
doi: 10.1111/maps.13477.
|
Bodenan, JD,
Starkey, N.A.,
Russell, S.S.,
Wright, I.P.,
Franchi, I. A.,
2020,
One of the earliest refractory inclusions and its implications for solar system history.
Geochimica et Cosmochimica Acta,, 286, 214–226.
|
Beck, A.W.,
Peplowski, P.N.,
Yokley, Z.W.,
2020,
A miniaturized XRF instrument for in situ planetary exploration: The Active X-Ray Spectrometer (AXRS).
Planetary and Space Science, 190, 104990.
|
Krot, A.N.,
Nagashima, K.,
Simon, S.B.,
Ma, C.,
Connolly Jr, H.C.,
Huss, G.R.,
Davis, A.M.,
and Bizzarro, M.,
2019c,
Mineralogy, petrography, and oxygen and aluminum-magnesium isotope systematics of grossite-bearing refractory inclusions. Geochemistry, 79, 125529,
https://doi.org/10.1016/j.chemer.2019.08.001.
|
Krot, A.N.,
Ivanova, M.A.,
and Bischoff, A. ,
Ma, C.,
Nagashima, K.,
Davis, A.M.,
Beckett, J.R.,
Simon, S.B.,
Komatsu, M.,
Fagan, T.J.,
Brenker, F.,
2019b,
Mineralogy, petrography, and oxygen isotopic compositions of ultrarefractory inclusions from carbonaceous chondrites. Geochemistry, 79, 125519,
https://doi.org/10.1016/j.chemer.2019.07.001.
|
Krot, A. N.,
2019a,
Refractory inclusions in carbonaceous chondrites: Records of early solar system processes. Meteoritics & Planetary Science, 54, 1647-1691.
|
Kaplan, H. H.,
Milliken, R. E.,
Alexander, C. M. O. D.,
& Herd, C. D. ,
2019,
Reflectance spectroscopy of insoluble organic matter (IOM) and carbonaceous meteorites. Meteoritics & Planetary Science, 54, 1051-1068.
|
Davidson, J.,
Alexander, C. M. D.,
Stroud, R. M.,
Busemann, H.,
& Nittler, L. R.,
2019,
Mineralogy and petrology of Dominion Range 08006: A very primitive CO3 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 265, 259-278.
|
Aponte, J. C.,
Woodward, H. K.,
Abreu, N. M.,
Elsila, J. E.,
& Dworkin, J. P.,
2019,
Molecular distribution, 13C-isotope, and enantiomeric compositions of carbonaceous chondrite monocarboxylic acids. Meteoritics & Planetary Science 54, 415-430.
|
Simon, Steven B.,
Alexander N. Krot,
and Kazuhide Nagashima ,
2019,
Oxygen and Al-Mg isotopic compositions of grossite-bearing refractory inclusions from CO3 chondrites. Meteoritics & Planetary Science, 54, 1362-1378.
|
Simon, S. B.,
Krot, A. N.,
Nagashima, K.,
Kööp, L.,
& Davis, A. M.,
2019,
Condensate refractory inclusions from the CO3. 00 chondrite Dominion Range 08006: Petrography, mineral chemistry, and isotopic compositions. Geochimica et Cosmochimica Acta, 246, 109-122.
|
Simkus, D. N.,
Aponte, J. C.,
Elsila, J. E.,
Parker, E. T.,
Glavin, D. P.,
& Dworkin, J. P.,
2019,
Methodologies for Analyzing Soluble Organic Compounds in Extraterrestrial Samples: Amino Acids, Amines, Monocarboxylic Acids, Aldehydes, and Ketones. Life, 9, 47.
|
Rubin, A.E. ,
and Li, Y.,
2019,
Formation and destruction of magnetite in CO3 chondrites and other chondrite groups. Geochemistry, 79, 125528,
https://doi.org/10.1016/j.chemer.2019.07.009.
|
Nielsen, S. G.,
Auro, M.,
Righter, K.,
Davis, D.,
Prytulak, J.,
Wu, F.,
& Owens, J. D.,
2019,
Nucleosynthetic vanadium isotope heterogeneity of the early solar system recorded in chondritic meteorites. Earth and Planetary Science Letters, 505, 131-140.
|
Nittler, L.R.,
Alexander, C. M.O'D.,
Davidson, J.,
Riebe, M.E.I.,
Stroud, R.M.,
Wang, J.,
2018,
High abundances of presolar grains and 15N-rich organic matter in CO3.0 chondrite Dominion Range 08006. Geochimica et Cosmochimica Acta, 226, 107-131,
https://doi.org/10.1016/j.gca.2018.01.038.
|
McAdam, M.M.,
Sunshine, J.M.,
Howard, K.T.,
Alexander, C.M.,
McCoy, T.J.,
Bus, S.J.,
2018,
Spectral evidence for amorphous silicates in least-processed CO meteorites and their parent bodies. Icarus, 306, 32-49,
https://doi.org/10.1016/j.icarus.2018.01.024.
|
Alexander, C. O. D.,
Greenwood, R. C.,
Bowden, R.,
Gibson, J. M.,
Howard, K. T.,
& Franchi, I. A. ,
2018,
A multi-technique search for the most primitive CO chondrites. Geochimica et Cosmochimica Acta, 221, 406-420,
https://doi.org/10.1016/j.gca.2017.04.021.
|
Haenecour, P.,
Floss, C.,
Zega, T. J.,
Croat, T. K.,
Wang, A.,
Jolliff, B. L.,
& Carpenter, P. ,
2018,
Presolar Silicates in the Matrix and Fine-grained Rims Around Chondrules in Primitive CO3. 0 Chondrites: Evidence for Pre-Accretionary Aqueous Alteration of the Rims in the Solar Nebula. . Geochimica et Cosmochimica Acta, 221, 379–405,
https://doi.org/10.1016/j.gca.2017.06.004.
|
Schrader, D. L.,
& Davidson, J. ,
2017,
CM and CO chondrites: A common parent body or asteroidal neighbors? Insights from chondrule silicates. .
Geochimica et Cosmochimica Acta, 214, 157-171,
http://dx.doi.org/10.1016/j.gca.2017.07.031.
|
Aponte, J. C.,
Abreu, N. M.,
Glavin, D. P.,
Dworkin, J. P.,
& Elsila, J. E.,
2017,
Distribution of aliphatic amines in CO, CV, and CK carbonaceous chondrites and relation to mineralogy and processing history. Meteoritics & Planetary Science, 52, 2632–2646,
doi: 10.1111/maps.12959.
|
Alexander, C. O. D.,
Cody, G. D.,
De Gregorio, B. T.,
Nittler, L. R.,
& Stroud, R. M.,
2017,
The nature, origin and modification of insoluble organic matter in chondrites, the major source of Earth’s C and N. Chemie der Erde-Geochemistry, 77, 227-256,
http://dx.doi.org/10.1016/j.chemer.2017.01.007.
|
Bonal, L.,
Quirico, E.,
Flandinet, L.,
Montagnac, G.,
2016,
Thermal history of type 3 chondrites from the Antarctic meteorite collection determined by Raman spectroscopy of their polyaromatic carbonaceous matter. Geochimica et Cosmochimica Acta, 189, 312-337.
|
Floss, C.,
Haenecour, P.,
2016,
Presolar silicate grains: Abundances, isotopic and elemental compositions, and the effects of secondary processing. GEOCHEMICAL JOURNAL, 50, 3-25,
https://doi.org/10.2343/geochemj.2.0377.
|
Simon, S. B.,
Grossman, L.,
2015,
Refractory inclusions in the pristine carbonaceous chondrites DOM 08004 and DOM 08006. Meteoritics & Planetary Science, 50, 1032-1049,
http://dx.doi.org/10.1111/maps.12452.
|
Burton, A. S.,
Elsila, J. E.,
Callahan, M. P.,
Martin, M. G.,
Glavin, D. P.,
Johnson, N. M.,
Dworkin, J. P.,
2012,
A propensity for n-ω-amino acids in thermally altered Antarctic meteorites. Meteoritics & Planetary Science, 47, 374-386,
http://dx.doi.org/10.1111/j.1945-5100.2012.01341.x.
|
RELAB,
,
Reflectance Experiment Lab
, catalogue of samples.
|