Identification of Lunar Material

Skip to content | Skip to navigation

Site Actions

Site Sections

Breadcrumbs

Home Antarctic MeteoritesLunar Meteorite CompendiumIdentification of Lunar Material

Identification of Lunar Material

The first kind of information that can be used to identify a meteorite as lunar is that obtained from either hand samples or thin sections.

Lunar meteorites can be feldspathic rocks (and including breccias), basalts (and including breccias), and mixed breccias, and each has its own specific textural characteristics. In addition, lunar materials contain some unique minerals that can help to identify them as lunar.

For example, armalcolite is a mineral first found on the Moon (Mg0.5Fe0.5Ti2O5, with a structure similar to ferropseudobrookite). In addition, some lunar basalts contain > 5 wt% ilmenite, and can also contain FeNi metal.

The second kind of information is compositional data.

The Moon is known to be depleted in volatile elements such as Na and Mn. As a result, plagioclase feldspar is highly calcic (anorthitic), and Fe/Mn ratios are higher than many other meteorites and planetary basalts.

For example, Fe/Mn ratios for lunar materials are distinct from martian and HED achondrites. This was first observed by Laul et al. (1972) and has been confirmed by many others in subsequent studies of both Apollo and Luna samples, as well as lunar meteorites (Fig. 2). Furthermore, K/La is variable in achondrites and differentiated planets (Fig. 3).

FeO vs MnO Correlation in Apollo Samples

Figure 2. FeO vs. MnO correlation in Apollo samples from Laul et al. (1972); compared to eucrites, howardites, and chondrites.

K vs La Correlation in Apollo Samples

Figure 2. K vs. La correlation in Apollo samples from Wanke et al. (1972) compared to eucrites, terrestrial and martian meteorites.

The lunar K/La ratio is the lowest, and helps to distinguish lunar samples from others. This characteristic was first reported by Wanke et al. (1972). Chromium concentrations of lunar rocks are typically 100x that of equivalent terrestrial rocks (Korotev, 2005).

And finally, oxygen isotopes in material from the Moon are also distinct from other meteoritic basalts, such as eucrites and shergotttites, but identical to terrestrial samples. Mayeda et al. (1983) measured the first lunar meteorite, and a compilation of data (Table 2) shows extreme homogeneity (Fig. 4).

 

Three oxygen isotope diagram for lunar meteorites

Figure 4: Three oxygen isotope diagram for lunar meteorites (data summarized in Table 2), and other achondrites (data from Clayton and Mayeda, 1996).

Table 2: Oxygen Isotopic Data for Lunar Meteorites
Sample Type δ18O δ17O Δ17O ref
ALH 81005  wr  6.03 3.2 0.0644 1
Asuka 881757  pc  5.74 2.96 -0.0248 1
Asuka 881757  px  5.38 2.76 -0.0376 1
DaG 262  wr (Chicago)  5.8 3.01 -0.006 3
DaG 262  wr (Milton-Keynes)  6.17 3.21 0.0016 3
DaG-400  wr  6.48 3.38 0.01 12
Dho-025  wr  5.47 2.81 -0.0344 2
Dho-026  wr  5.77 2.87 -0.1304 2
Dho-287  wr  6.2 3.24   7
EET 87521  wr  5.44 2.83 0.0012 1
Kalahari 008  wr  6.52 3.32   11
Kalahari 009  wr  6.87 3.45   11
LAP 02205  Wr  5.6 2.7 -0.21 6
MAC 88105  wr  5.73 2.85 -0.1296 1
MIL 05035  xtals  5.71 2.97 -0.019 13
 " matrix  5.47 2.86 -0.008 13
NEA 001  Wr 1  4.4 2.26   10
 " Wr 2  4.78 2.48   10
NEA 003  wr  5.76 3.04   14
NWA 032  wr  5.63 2.92 -0.0076 4
NWA 482  Wr 1  4.84 2.47   10
 " Wr 2  5.36 2.73   10
NWA 773  olivine gabbro  4.99 2.5 -0.0948 5
NWA 773  breccia  4.93 2.6 0.0364 5
NWA3136  Wr 1  5.83 3.06 -0.03 9
 " Wr 2  5.96 3.1 -0.05 9
NWA3163  Wr 1  5.082 2.663   10
 " Wr 2  5.476 2.833   10
 " Wr 3  5.479 2.809   10
 " Wr 4  5.407 2.785   10
 " Wr 5  5.335 2.782   10
Yamato 791197  wr  5.39 2.88 0.0772 1
Yamato 793169  wr  5.47 2.88 0.0356 1
Yamato 793274  wr  5.68 3 0.0464 1
Yamato 82192  wr  5.56 2.85 -0.0412 1
Yamato 82193  wr  5.4 2.8 -0.008 1
Yamato 86032  wr  5.64 3.03 0.0972 1
Yamato 983885  wr  5.65 2.89 -0.05 8
1) Clayton and Mayeda (1996); 2) Taylor et al. (2001); 3) Bischoff et al. (1998); 4) Fagan et al. (2002); 5) Fagan et al. (2003); 6) Satterwhite (2003); 7) Anand et al. (2003); 8) Kojima and Imae (2001); 9) Kuehner et al. (2005); 10) Irving et al. (2006); 11) Sokol and Bischoff (2005) and Sokol et al. (2008); 12) Zipfel et al. (2001); 13) Joy et al. (2008); 14) Haloda et al. (2009).

 

Return to the Introduction