Sample Petrographic Description
Sample Number | EET 96006 |
Newsletter | 21,1 |
Location | Elephant Moraine |
Field Number | 10652 |
Dimensions (cm) | 4.5 x 3.5 x 2.5 |
Weight (g) | 42.15 |
Original Classification | C2 Chondrite |
Updated Classification | CM2 Chondrite |
Pairing | EET 96005; EET 96006; EET 96007; EET 96011; EET 96012; EET 96013; EET 96014; EET 96016; EET 96017; EET 96019; EET 96029; EET 96096; EET 96097; EET 96098; EET 96226; |
Mineral Composition (%Fa & %Fs) | |
Fayalite (mol%): 1-39;Ferrosilite (mol%): 1-4 | |
Weathering | |
Be | |
Fracturing | |
B | |
Macroscopic Description - Kathleen McBride | |
These carbonaceous chondrites a have black, rough fusion crust with a dull luster. The surface is pitted and bubbles are present on some of the exterior. The interior is a dull black color with some gray, splotchy inclusions and minor rust. Most of the inclusions are <1 mm in size. | |
Thin Section Description (,2) - Brian Mason | |
The sections are so similar that a single description will suffice; the meteorites are probably paired. The sections show a few small chondrules (up to 0.6 mm) and numerous mineral grains in a black matrix; trace amounts of nickel-iron and sulfide are present as small scattered grains. Microprobe analyses show most of the olivine grains near Mg2SiO4 but with a few iron-rich grains; pyroxene compositions are Fs1-4. The matrix consists mainly of iron-rich serpentine. The meteorites are C2 chondrites. | |
Reclassification Notes (AMN 31,1) | |
Many carbonaceous chondrites were initially classified as C2 in early newsletters. These are mostly CM2, based on matrix properties, chondrules abundance and sizes, and therefore all these samples have been reclassified more specifically here as CM2. |
Antarctic Meteorite Images for Sample EET 96006 | ||||
Lab Photo(s) : | ||||
![]() |
Antarctic Meteorite Images for Sample EET 96006 | ||||
Thin Section Photo(s) : | ||||
![]() |
![]() |
![]() |
References for Sample EET96006 | |
Krietsch, D., Busemann, H., Riebe, M.E.I., King, A.J., Alexander, C.M.O’D., Maden, C., 2021, Noble gases in CM carbonaceous chondrites: Effect of parent body aqueous and thermal alteration and cosmic ray exposure ages. Geochimica et Cosmochimica Acta, 310, 240–280, https://doi.org/10.1016/j.gca.2021.05.050. | |
Lee, M.R., Daly, L., Floyd, C., and Martin, P.E., 2021, CM carbonaceous chondrite falls and their terrestrial alteration. Meteoritics & Planetary Science, 56, 34-48, doi:10.1111/maps.13607. | |
Lindgren, P., Lee, M. R., Starkey, N. A., & Franchi, I. A. , 2017, Fluid evolution in CM carbonaceous chondrites tracked through the oxygen isotopic compositions of carbonates. . Geochimica et Cosmochimica Acta, 204, 240-251, http://dx.doi.org/10.1016/j.gca.2017.01.048. | |
Alexander, C. M. O'D., Bowden, R., Fogel, M. L., Howard, K. T., 2015, Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810-833, http://dx.doi.org/10.1111/maps.12410. | |
Alexander, C.O'D. M. O, Bowden,. R., Fogel, M. L., Howard, K. T., Herd, C. D. K., Nittler, L. R., 2012, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science, 337(6095), 2012, 721-723. | |
Tyra, M. A., Farquhar, J., Guan, Y., Leshin, L. A., 2012, An oxygen isotope dichotomy in CM2 chondritic carbonates-A SIMS approach. Geochimica et Cosmochimica Acta, 77, 15-Jan-12, 383-395, ISSN 0016-7037, http://dx.doi.org/10.1016/j.gca.2011.10.003. | |
Tyra, M. A., Farquhar, J., Wing, B. A., Benedix, G. K., Jull, A. J. T., Jackson, T. L., Thiemens, M. H., 2007, Terrestrial alteration of carbonate in a suite of Antarctic CM chondrites: Evidence from oxygen and carbon isotopes. Geochimica et Cosmochimica Acta, 71 Issue 3, 1-Feb-07, 782-795, ISSN 0016-7037, http://dx.doi.org/10.1016/j.gca.2006.10.023. | |
Benoit, P. H., Sears, D. W. G., Akridge, J. M. C., Bland, P. A., Berry, F. J., Pillinger, C. T., 2000, The non-trivial problem of meteorite pairing. Meteoritics & Planetary Science, 35, 393-417. |