Bates, H.C.,
Donaldson Hanna, K.L.,
King, A.J.,
Bowles, N.E.,
and Russell, S.S.,
2021,
A spectral investigation of aqueously and thermally altered CM, CM-AN, and CY chondrites under simulated asteroid conditions for comparison with OSIRIS-REx and Hayabusa2 observations. Journal of Geophysical Research: Planets, 126, e2021JE006827,
https://doi.org/10.1029/2021JE006827.
|
Hiroi, T.,
Ohtsuka, K.,
Howard, K.T.,
Robertson, K.R.,
and Milliken, R.E.,
Kaiden, H.,
Imae, N.,
Misawa, K.,
Kojima, H.,
Sasakia, S.,
Matsuokaa, M.,
Nakamura, T.,
Bish, D.L.,
2021,
UV-visible-infrared spectral survey of Antarctic carbonaceous chondrite chips. Polar Science, 29, 100723,
https://doi.org/10.1016/j.polar.2021.100723.
|
King, A.J.,
Schofield, P.F.,
Russell, S.S.,
2021,
Thermal alteration of CM carbonaceous chondrites: Mineralogical changes and metamorphic temperatures. Geochimica et Cosmochimica Acta, 298, 167–190,
https://doi.org/10.1016/j.gca.2021.02.011.
|
King, A.J.,
Mason, E.,
Bates, H.C.,
Schofeld, P.F.,
Donaldson Hanna, K.L.,
Bowles, N.E.,
and Russell, S.S.,
2021,
Tracing the earliest stages of hydrothermal alteration on the CM chondrite parent body. Meteoritics & Planetary Science, 56, 1708-1728,
doi: 10.1111/maps.13734.
|
Krietsch, D.,
Busemann, H.,
Riebe, M.E.I.,
King, A.J.,
Alexander, C.M.O’D.,
Maden, C.,
2021,
Noble gases in CM carbonaceous chondrites: Effect of parent body aqueous and thermal alteration and cosmic ray exposure ages. Geochimica et Cosmochimica Acta, 310, 240–280,
https://doi.org/10.1016/j.gca.2021.05.050.
|
Lee, M.R.,
Cohen, B.E.,
Boyce, A.J.,
Hallis, LJ.,
and Daly, L.,
2021,
The pre-atmospheric hydrogen inventory of CM carbonaceous chondrites. Geochimica et Cosmochimica Acta, 309, 31-44,
https://doi.org/10.1016/j.gca.2021.06.013.
|
Matzka, M.,
Lucio, M.,
Kanawati, B.,
Quirico, E.,
Bonal, L.,
Loehle, S.,
and Schmitt-Kopplin, P.,
2021,
Thermal History of Asteroid Parent Bodies Is Reflected in Their Metalorganic Chemistry. The Astrophysical Journal Letters, 915, L7,
https://doi.org/10.3847/2041-8213/ac0727.
|
Prestgard, T.,
Bonal, L.,
Eschrig, J.,
Gattacceca, J.,
Sonzogni, C.,
and Beck, P.,
2021,
Miller Range 07687 and its place within the CM-CO clan. Meteoritics & Planetary Science, 56, 1758–1783,
doi: 10.1111/maps.13736.
|
Suttle, M.D.,
Schofield, P.F.,
Bates, H.,
Russell, S.S.,
2021,
The aqueous alteration of CM chondrites, a review. Geochimica et Cosmochimica Acta, 299, 219–256,
https://doi.org/10.1016/j.gca.2021.01.014.
|
Tatsumi, E.,
Brunetto, R.,
and Hiroi, T.,
Sakatani, N.,
Riu, L.,
Matsuoka, M.,
Honda, R.,
Morota, T.,
Kameda, S.,
Nakamura, T.,
Zolensky, M.,
2021,
Spectrally blue hydrated parent body of asteroid (162173) Ryugu. Nature Communications, 12, 13-Jan,
https://doi.org/10.1038/s41467-021-26071-8.
|
Velbel, M.A.,
and Zolensky, M.E.,
2021,
Thermal metamorphism of CM chondrites: A dehydroxylation-based peak temperature thermometer and implications for sample return from asteroids Ryugu and Bennu. Meteoritics & Planetary Science, 56, 546–585,
doi: 10.1111/maps.13636.
|
Beck, A.W.,
Peplowski, P.N.,
Yokley, Z.W.,
2020,
A miniaturized XRF instrument for in situ planetary exploration: The Active X-Ray Spectrometer (AXRS).
Planetary and Space Science, 190, 104990.
|
Bloom, H.,
Lodders, K.,
Chen, H.,
Zhao, C.,
Tian, Z.,
Koefoed, P.,
Petö, M.K.,
Jiang, J.,
and Wang, K.,
2020,
Potassium isotope compositions of carbonaceous and ordinary chondrites: Implications on the origin of volatile depletion in the early solar system.
Geochimica et Cosmochimica Acta, 277, 111–131.
|
Greenwood, R.C.,
Burbine, T.H.,
and Franchi, I.A.,
2020,
Linking Asteroids and meteorites to the primordial planetesimal population. Geochimica et Cosmochimica Acta, 277, 377-406,
doi: 10.1016/j.gca.2020.02.004.
|
Hanna, R.D.,
Hamilton, V.E.,
Haberle, C.W.,
King, A.J.,
Abreu, N.M.,
and Friedrich, J.M.,
2020,
Distinguishing relative aqueous and heating among CM chondrites with IR spectroscopy. Icarus, 346, 113760,
doi: 10.1016/j.icarus.2020.113760.
|
Kaplan, H.H.,
Connolly, H.C.,
Dotto, E.,
Emery, J.P.,
Fornasier, S.,
Lantz, C.,
Lim, L.F.,
Merlin, F.,
Praet, A.,
Reuter, D.C.,
Sanford, S.A.,
Hamilton, V.E.,
Simon, A.A.,
Takir, D.,
and Lauretta, D.S.,
Howell, E.S.,
Anderson, F.S.,
Barrucci, M.A.,
Brucato, J.,
Burbine, T.H.,
Clark, B.E.,
Cloutis, E.A.,
2020,
Visible-near infrared spectral indices for mapping mineralogy and chemistry with OSIRIS-Rex. Meteoritics & Planetary Science, 55, 744-765,
doi: 10.111/maps.13461.
|
Kimura, M.,
Imae, N.,
Komatsu, M.,
Barrat, J. A.,
Greenwood, R. C.,
Yamaguchi, A.,
and Noguchi, T.,
2020,
The most primitive CM chondrites, Asuka 12085, 12169, and 12236, of subtypes 3.0–2.8: Their characteristic features and classification.
Polar Science, 26, 100565.
|
Potin, S.,
Beck, P.,
Usui, F.,
Bonal, L,
Vernazza, P.,
Schmitt, B.,
2020,
Style and intensity of hydration among C-complex asteroids: A comparison to desiccated carbonaceous chondrites. Icarus, 348, 113826,
doi: 10.1016/j.icarus.2020.113826.
|
Aponte, J. C.,
Whitaker, D.,
Powner, M. W.,
Elsila, J. E.,
& Dworkin, J. P. ,
2019,
Analyses of aliphatic aldehydes and ketones in carbonaceous chondrites. ACS Earth and Space Chemistry 3, 463-472.
|
Aponte, J. C.,
Woodward, H. K.,
Abreu, N. M.,
Elsila, J. E.,
& Dworkin, J. P.,
2019,
Molecular distribution, 13C-isotope, and enantiomeric compositions of carbonaceous chondrite monocarboxylic acids. Meteoritics & Planetary Science 54, 415-430.
|
Garenne, A.,
Beck, P.,
Montes-Hernandez, G.,
Bonal, L.,
Quirico, E.,
Proux, O.,
and Hazemann, J.L.,
2019,
The iron record of asteroidal processes in carbonaceous chondrites. Meteoritics & Planetary Science, 54, 2652-2665,
doi: 10.1111/maps.13377.
|
Simkus, D. N.,
Aponte, J. C.,
Elsila, J. E.,
Parker, E. T.,
Glavin, D. P.,
& Dworkin, J. P.,
2019,
Methodologies for Analyzing Soluble Organic Compounds in Extraterrestrial Samples: Amino Acids, Amines, Monocarboxylic Acids, Aldehydes, and Ketones. Life, 9, 47.
|
Suttle, M.D.,
Genge, M.J.,
Salge, T.,
Lee, M.R.,
Folco, L.,
Góral, T.,
Russell, S.S. ,
and Lindgren, P.,
2019,
A microchondrule-bearing micrometeorite and comparison with microchondrules in CM chondrites. Meteoritics & Planetary Science, 54, 1303-1324,
doi: 10.1111/maps.13279.
|
Braukmüller, N.,
Wombacher, F.,
Hezel, D. C.,
Escoube, R.,
& Münker, C.,
2018,
The chemical composition of carbonaceous chondrites: Implications for volatile element depletion, complementarity and alteration. Geochimica et Cosmochimica Acta, 239, 17-48.
|
Mahan, B.,
Moynier, F.,
Beck, P.,
Pringle, E. A.,
& Siebert, J. ,
2018,
A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents. .
Geochimica et Cosmochimica Acta, 220, 19-35,
http://dx.doi.org/10.1016/j.gca.2017.09.027.
|
Quirico, E.,
and Herd, C.D.K.,
Bonal, L.,
Beck, P.,
Yabuta, H.,
Nakamura, T.,
Nakato, A.,
Flandinet, L.,
Montagnac, G.,
Schmitt-Kopplin, P.,
2018,
Prevalence and nature of heating processes in CM and C2-ungrouped chondrites as revealed by insoluble organic matter. Geochimica et Cosmochimica Acta, 241, 17-37.
|
Lee, M. R.,
Lindgren, P.,
King, A. J.,
Greenwood, R. C.,
Franchi, I. A.,
Sparkes, R.,
2016,
Elephant Moraine 96029, a very mildly aqueously altered and heated CM carbonaceous chondrite: implications for the drivers of parent body processing. Geochimica et Cosmochimica Acta, 187, 237-259.
|
Garenne, A.,
Beck, P.,
Montes-Hernandez, G.,
Brissaud, O.,
Schmitt, B.,
Quirico, E.,
Howard, K. T.,
2016,
Bidirectional reflectance spectroscopy of carbonaceous chondrites: Implications for water quantification and primary composition.
Icarus, 264, 172-183,
https://doi.org/10.1016/j.icarus.2015.09.005.
|
Alexander, C. M. O'D.,
Bowden, R.,
Fogel, M. L.,
Howard, K. T.,
2015,
Carbonate abundances and isotopic compositions in chondrites. Meteoritics & Planetary Science, 50, 810-833,
http://dx.doi.org/10.1111/maps.12410.
|
Lindgren, P.,
Hanna, R. D.,
Dobson, K. J.,
Tomkinson, T.,
Lee, M. R.,
2015,
The paradox between low shock-stage and evidence for compaction in CM carbonaceous chondrites explained by multiple low-intensity impacts.
Geochimica et Cosmochimica Acta, 148, 1-Jan-15, 159-178, ISSN 0016-7037,
http://dx.doi.org/10.1016/j.gca.2014.09.014.
|
Lee, M. R.,
Lindgren, P.,
Sofe, M. R.,
2014,
Aragonite, breunnerite, calcite and dolomite in the CM carbonaceous chondrites: High fidelity recorders of progressive parent body aqueous alteration. Geochimica et Cosmochimica Acta, 144, 126-156.
|
Beck, P.,
Garenne, A.,
Quirico, E.,
Bonal, L.,
Montes-Hernandez, G.,
Moynier, F.,
Schmitt, B.,
2014,
Transmission infrared spectra (2-25 µm) of carbonaceous chondrites (CI, CM, CV-CK, CR, C2 ungrouped): Mineralogy, water, and asteroidal processes.
Icarus, 229, Feb-14, 263-277, ISSN 0019-1035,
http://dx.doi.org/10.1016/j.icarus.2013.10.019.
|
Garenne, A.,
Beck, P.,
Montes-Hernandez, G.,
Chiriac, R.,
Toche, F.,
Quirico, E.,
Bonal, L.,
Schmitt, B.,
2014,
The abundance and stability of "water" in type 1 and 2 carbonaceous chondrites (CI, CM and CR).
Geochimica et Cosmochimica Acta, 137, 15-Jul-14, 93-112, ISSN 0016-7037,
http://dx.doi.org/10.1016/j.gca.2014.03.034.
|
Alexander, C.O'D. M. O,
Bowden,. R.,
Fogel, M. L.,
Howard, K. T.,
Herd, C. D. K.,
Nittler, L. R.,
2012,
The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science, 337(6095), 2012, 721-723.
|
Cloutis, E. A.,
Hudon, P.,
Hiroi, T.,
Gaffey, M. J.,
Mann, P. J.,
2012,
Spectral reflectance properties of carbonaceous chondrites: 8. "Other" carbonaceous chondrites: CH, ungrouped, polymict, xenolithic inclusions, and R chondrites.
Icarus, 221 Issue 2, November-December 2012, 984-1001, ISSN 0019-1035,
http://dx.doi.org/10.1016/j.icarus.2012.10.008.
|
Nazarov, M. A.,
Kurat, G.,
Brandstaetter, F.,
Ntaflos, T.,
Chaussidon, M.,
Hoppe, P.,
2009,
Phosphorus-bearing sulfides and their associations in CM chondrites. Petrology, 17(2), 101-123.
|
Rochette, P.,
Kohout, T.,
Pesonen, L.,
Quirico, E.,
Sagnotti, L.,
Skripnik, A.,
Gattacceca, J.,
Bonal, L.,
Bourot-Denise, M.,
Chevrier, V.,
Clerc, J. P.,
Consolmagno, G.,
Folco, L.,
Gounelle, M.,
2008,
Magnetic classification of stony meteorites: 2. Non-ordinary chondrites. Meteoritics & Planetary Science, 43, 959-980,
http://dx.doi.org/10.1111/j.1945-5100.2008.tb01092.x.
|
Huang, Y.,
Wang, Y.,
Alexandre, M. R.,
Lee, T.,
Rose-Petruck, C.,
Fuller, M.,
Pizzarello, S.,
2005,
Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous meteorites.
Geochimica et Cosmochimica Acta, 69 Issue 4, 15-Feb-05, 1073-1084, ISSN 0016-7037,
http://dx.doi.org/10.1016/j.gca.2004.07.030.
|
Benoit, P. H.,
Sears, D. W. G.,
Akridge, J. M. C.,
Bland, P. A.,
Berry, F. J.,
Pillinger, C. T.,
2000,
The non-trivial problem of meteorite pairing. Meteoritics & Planetary Science, 35, 393-417.
|
RELAB,
,
Reflectance Experiment Lab
, catalogue of samples.
|